Download Free Synthesis And Characterization Of Functional One Dimensional Nanostructures Book in PDF and EPUB Free Download. You can read online Synthesis And Characterization Of Functional One Dimensional Nanostructures and write the review.

Nanomaterials Synthesis: Design, Fabrication and Applications combines the present and emerging trends of synthesis routes of nanomaterials with the incorporation of various technologies. The book covers the new trends and challenges in the synthesis and surface engineering of a wide range of nanomaterials, including emerging technologies used for their synthesis. Significant properties, safety and sustainability and environmental impacts of the synthesis routes are explored. This book is an important information source that will help materials scientists and engineers who want to learn more about how different classes of nanomaterials are designed. Highlights recent developments in, and opportunities created by, new nanomaterials synthesis methods Explains major synthesis techniques for different types of nanomaterials Discusses the challenges of using a variety of synthesis methods
Reviews the latest research breakthroughs and applications Since the discovery of carbon nanotubes in 1991, one-dimensional nanostructures have been at the forefront of nanotechnology research, promising to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. With contributions from 68 leading international experts, this book reviews both the underlying principles as well as the latest discoveries and applications in the field, presenting the state of the technology. Readers will find expert coverage of all major classes of one-dimensional nanostructures, including carbon nanotubes, semiconductor nanowires, organic molecule nanostructures, polymer nanofibers, peptide nanostructures, and supramolecular nanostructures. Moreover, the book offers unique insights into the future of one-dimensional nanostructures, with expert forecasts of new research breakthroughs and applications. One-Dimensional Nanostructures collects and analyzes a wealth of key research findings and applications, with detailed coverage of: Synthesis Properties Energy applications Photonics and optoelectronics applications Sensing, plasmonics, electronics, and biosciences applications Practical case studies demonstrate how the latest applications work. Tables throughout the book summarize key information, and diagrams enable readers to grasp complex concepts and designs. References at the end of each chapter serve as a gateway to the literature in the field. With its clear explanations of the underlying principles of one-dimensional nanostructures, this book is ideal for students, researchers, and academics in chemistry, physics, materials science, and engineering. Moreover, One-Dimensional Nanostructures will help readers advance their own investigations in order to develop the next generation of applications.
The use of nanotechnologies continues to grow, as nanomaterials have proven their versatility and use in many different fields and industries within the scientific profession. Using nanotechnology, materials can be made lighter, more durable, more reactive, and more efficient leading nanoscale materials to enhance many everyday products and processes. With many different sizes, shapes, and internal structures, the applications are endless. These uses range from pharmaceutics to materials such as cement or cloth, electronics, environmental sustainability, and more. Therefore, there has been a recent surge of research focused on the synthesis and characterizations of these nanomaterials to better understand how they can be used, their applications, and the many different types. The Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials seeks to address not only how nanomaterials are created, used, or characterized, but also to apply this knowledge to the multidimensional industries, fields, and applications of nanomaterials and nanoscience. This includes topics such as both natural and manmade nanomaterials; the size, shape, reactivity, and other essential characteristics of nanomaterials; challenges and potential effects of using nanomaterials; and the advantages of nanomaterials with multidisciplinary uses. This book is ideally designed for researchers, engineers, practitioners, industrialists, educators, strategists, policymakers, scientists, and students working in fields that include materials engineering, engineering science, nanotechnology, biotechnology, microbiology, drug design and delivery, medicine, and more.
One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers is a comprehensive book depicting the electrospinning technique and related 1D unique electrospun nanofibers. The first part of the book focuses on electrospinning technique, with chapters describing Electrospinning setup, electrospinning theories, and related working parameter. The second part of the book describes in detail specific topics on how to control the electrospun fiber properties such as how to control the fiber direction, how to control the fiber surface morphology, how to control the fiber structure, and how to construct 3D structures by electrospun fibers. The final part of the book depicts the applications of the electrospun nanofibers, with sections describing in detail specific fields such as electrospun nanofiber reinforcement, filtration, electronic devices, lithium-ion batteries, fuel cells, biomedical field, and so on. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers is designed to bring state-of-the-art on electrospinning together into a single book and will be valuable resource for scientists in the electrospinning field and other scientists involved in biomedical field, mechanical field, materials, and energy field. Dr. Zhenyu Li is an associate professor at the Dept. of Chemistry, Jilin University, Changchun, P. R. China. Currently, he also holds the position in Australian Future Fibres Research & Innovation Centre, Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia. Dr. Ce Wang is a professor at the Dept. of Chemistry, Jilin University, Changchun, P. R. China.
This book is a printed edition of the Special Issue "Zinc Oxide Nanostructures: Synthesis and Characterization" that was published in Materials
Tailored Functional Oxide Nanomaterials A comprehensive exploration of the preparation and application of metal oxide nanomaterials Tailored Functional Oxide Nanomaterials: From Design to Multi-Purpose Applications delivers a one-of-a-kind discussion of the fundamentals and key applications of metal oxide nanomaterials. The book explores everything from their preparation to the mastering of their characteristics in an interdisciplinary view. The distinguished authors address theoretical research and advanced technological utilizations, illustrating key issues for the understanding and real-world end-uses of the most important class of inorganic materials. The interplay between the design, preparation, chemico-physical characterization, and functional behaviors of metal oxide nanomaterials in a variety of fields is presented. Up-to-date work and knowledge on these materials is also described, with fulsome summaries of important applications that are relevant to researchers pursuing safety, sustainability, and energy end-uses. Readers will also find: A thorough introduction to vapor phase growth of metal oxide thin films and nanostructures Comprehensive explorations of addressing complex transition metal oxides at the nanoscale, including bottom-up syntheses of nano-objects and properties Practical discussions of nanosized oxides supported on mats of carbon nanotubes, including synthesis strategies and performances of Ti/CNT systems In-depth examinations of computational approaches to the study of oxide nanomaterials and nanoporous oxides Perfect for materials scientists, inorganic chemists, physicists, catalytic chemists, and chemical engineers, Tailored Functional Oxide Nanomaterials will also earn a place in the libraries of solid-state chemists.
The book is focused on nanostructured materials, which have been well-studied in various fields from life to materials sciences. Nanostructured science has the potential to help make revolutionary discoveries based on modifying the properties of these materials compared with micro-structured materials. Nanostructured materials are the key to discovering new products based on new technologies. This book is focused on presenting new state-of-the-art methods for the synthesis and processing of nanostructured materials. These materials can be used in both in life and materials science with applications from biomedical devices, drug delivery systems, medical imaging with multiferoic materials, high-energy batteries, capacitors, superconductors, and aerospace components.
A unique overview of the manufacture of and applications for materials nanoarchitectonics, placing otherwise hard-to-find information in context. Edited by highly respected researchers from the most renowned materials science institute in Japan, the first part of this volume focuses on the fabrication and characterization of zero to three-dimensional nanomaterials, while the second part presents already existing as well as emerging applications in physics, chemistry, biology, and biomedicine.
Dedicated to SiC-based 1D nanostructures, this book explains the properties and different growth methods of these nanostructures. It details carburization of silicon nanowires, a growth process for obtaining original Si-SiC core-shell nanowires and SiC nanotubes of high crystalline quality, thanks to the control of the siliconout-diffusion. The potential applications of these particular nano-objects is also discussed, with regards to their eventual integration in biology, energy and electronics.
21st Century Nanoscience - A Handbook: Low-Dimensional Materials and Morphologies (Volume 4) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This fourth volume in a ten-volume set covers low-dimensional materials and morphologies. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.