Download Free Synergetic Phenomena In Active Lattices Book in PDF and EPUB Free Download. You can read online Synergetic Phenomena In Active Lattices and write the review.

In this book, the authors deal with basic concepts and models, with methodologies for studying the existence and stability of motions, understanding the mechanisms of formation of patterns and waves, their propagation and interactions in active lattice systems, and about how much cooperation or competition between order and chaos is crucial for synergetic behavior and evolution.
This book addresses a large variety of models in mathematical and computational neuroscience. It is written for the experts as well as for graduate students wishing to enter this fascinating field of research. The author studies the behaviour of large neural networks composed of many neurons coupled by spike trains. An analysis of phase locking via sinusoidal couplings leading to various kinds of movement coordination is included.
The Sixth International Symposium "Frontiers of Fundamental and Computational Physics", Udine, Italy, 26-29 September 2004, aimed at providing a platform for a wide range of physicists to meet and share thoughts on the latest trends in various, mainly cross-disciplinary research areas. This includes the exploration of frontier lines in High Energy Physics, Theoretical Physics, Gravitation and Cosmology, Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines were unified by the use of computers as an, often primary, research instruments, or dealing with issues related to information theory. The book contains contributions by Nobel Laureates Leon N. Cooper (1972) and Gerard ‘t Hooft (1999), and concludes with two interesting chapters on new approaches to Physics Teaching. Audience Graduate students, lecturers and researches in Physics
This book presents the result of a joint effort from different European Institutions within the framework of the EU funded project called SPARK II, devoted to device an insect brain computational model, useful to be embedded into autonomous robotic agents. Part I reports the biological background on Drosophila melanogaster with particular attention to the main centers which are used as building blocks for the implementation of the insect brain computational model. Part II reports the mathematical approach to model the Central Pattern Generator used for the gait generation in a six-legged robot. Also the Reaction-diffusion principles in non-linear lattices are exploited to develop a compact internal representation of a dynamically changing environment for behavioral planning. In Part III a software/hardware framework, developed to integrate the insect brain computational model in a simulated/real robotic platform, is illustrated. The different robots used for the experiments are also described. Moreover the problems related to the vision system were addressed proposing robust solutions for object identification and feature extraction. Part IV includes the relevant scenarios used in the experiments to test the capabilities of the insect brain-inspired architecture taking as comparison the biological case. Experimental results are finally reported, whose multimedia can be found in the SPARK II web page: www.spark2.diees.unict.it
This book presents the current knowledge about nonlinear localized travelling excitations in crystals. Excitations can be vibrational, electronic, magnetic or of many other types, in many different types of crystals, as silicates, semiconductors and metals. The book is dedicated to the British scientist FM Russell, recently turned 80. He found 50 years ago that a mineral mica muscovite was able to record elementary charged particles and much later that also some kind of localized excitations, he called them quodons, was also recorded. The tracks, therefore, provide a striking experimental evidence of quodons existence. The first chapter by him presents the state of knowledge in this topic. It is followed by about 18 chapters from world leaders in the field, reviewing different aspects, materials and methods including experiments, molecular dynamics and theory and also presenting the latest results. The last part includes a personal narration of FM Russell of the deciphering of the marks in mica. It provides a unique way to present the science in an accessible way and also illustrates the process of discovery in a scientist's mind.
This book offers an overview on the background to systemics. It introduces the concept of Collective Being as a Multiple System established by processes of emergence and self-organization of the same agents simultaneously or dynamically interacting in different ways. The principles underlying this approach are grounded on the theoretical role of the observer. This view allows to model in a more suitable way complex systems, such as in physics, biology and economics.
Bringing together over fifty contributions on all aspects of nonlinear and complex dynamics, this impressive topical collection is both a scientific and personal tribute, on the occasion of his 70th birthday, by many outstanding colleagues in the broad fields of research pursued by Prof. Manuel G Velarde. The topics selected reflect the research areas covered by the famous Instituto Pluridisciplinar at the Universidad Complutense of Madrid, which he co-founded over two decades ago, and include: fluid physics and related nonlinear phenomena at interfaces and in other geometries, wetting and spreading dynamics, geophysical and astrophysical flows, and novel aspects of electronic transport in anharmonic lattices, as well as topics in neurodynamics and robotics.
Using simple models this book shows how we can gain insights into the behavior of complex systems. It is devoted to the discussion of functional self-organization in large populations of interacting active elements. The authors have chosen a series of models from physics, biochemistry, biology, sociology and economics, and systematically discuss their general properties. The book addresses researchers and graduate students in a variety of disciplines.
This book addresses a large variety of models in mathematical and computational neuroscience. It is written for the experts as well as for graduate students wishing to enter this fascinating field of research. The author studies the behaviour of large neural networks composed of many neurons coupled by spike trains. He devotes the main part to the synchronization problem. He presents neural net models more realistic than the conventional ones by taking into account the detailed dynamics of axons, synapses and dendrites, allowing rather arbitrary couplings between neurons. He gives a complete stabile analysis that goes significantly beyond what has been known so far. He also derives pulse-averaged equations including those of the Wilson--Cowan and the Jirsa-Haken-Nunez types and discusses the formation of spatio-temporal neuronal activity pattems. An analysis of phase locking via sinusoidal couplings leading to various kinds of movement coordination is included.
Centered around the natural phenomena of relaxations and fluctuations, this monograph provides readers with a solid foundation in the linear and nonlinear Fokker-Planck equations that describe the evolution of distribution functions. It emphasizes principles and notions of the theory (e.g. self-organization, stochastic feedback, free energy, and Markov processes), while also illustrating the wide applicability (e.g. collective behavior, multistability, front dynamics, and quantum particle distribution). The focus is on relaxation processes in homogeneous many-body systems describable by nonlinear Fokker-Planck equations. Also treated are Langevin equations and correlation functions. Since these phenomena are exhibited by a diverse spectrum of systems, examples and applications span the fields of physics, biology and neurophysics, mathematics, psychology, and biomechanics.