Download Free Synchronization And Channel Estimation In Broadband Wireless Systems Book in PDF and EPUB Free Download. You can read online Synchronization And Channel Estimation In Broadband Wireless Systems and write the review.

Multi-Carrier Techniques for Broadband Wireless Communications provides an accessible introduction to OFDM-based systems from a signal processing perspective. The first part presents a concise treatment of some fundamental concepts related to wireless communications and multicarrier systems, while the second offers a comprehensive survey of recent developments on a variety of critical design issues. These include synchronization techniques, channel estimation methods, adaptive resource allocation and practical schemes for reducing the peak-to-average power ratio of the transmitted waveform.
Multi-Carrier Techniques for Broadband Wireless Communications provides an accessible introduction to OFDM-based systems from a signal processing perspective. The first part presents a concise treatment of some fundamental concepts related to wireless communications and multicarrier systems, while the second offers a comprehensive survey of recent developments on a variety of critical design issues. These include synchronization techniques, channel estimation methods, adaptive resource allocation and practical schemes for reducing the peak-to-average power ratio of the transmitted waveform./a
The main focus of Single- and Multi-Carrier MIMO Transmission for Broadband Wireless Systems is to provide the basic understanding of the underlying techniques related to PHY-MAC design of future wireless systems. It includes basic concepts related to single- and multi-carrier transmissions together with MIMO techniques. Discussions related to different recent standards that use single- and multi-carrier transmissions are also explained.Single- and Multi-Carrier MIMO Transmission for Broadband Wireless Systems provides a comprehensive and holistic approach to the variety of technical solutions. Future system design would require these different technologies to work together, and not independently. Therefore, it is very important to analyze the effects and gains when they are put together in a unified platform. This is the prime focus of this book. Moreover, the authors include recent research results which are not yet published in another form. The book is intended to be used for lectures in graduate level courses at universities. PhD level students should also find it useful as this book will outline the fundamental concepts and design methods for PHY and MAC layers of future wireless systems. This book can also be used as a reference by engineers and developers in the industry as well as by researchers in academia. For professionals, system architects and managers who play a key role in the selection of a baseline system concept for future wireless standards, such as IMT-Advanced type architecture, the authors will include discussions, analysis and guidelines to highlight overall system level perspective.
The next generation mobile communication networks (4G) have the challenging target of The next generation mobile communication networks (4G) have the challenging target of providing a peak data rate of 1 Gigabit per second local area and 100 Megabit per second wide area. The ability to offer such high data rates in 100MHz bandwidth requires overall a very high spectral efficiency, and hence the need for multi-antenna techniques (MIMO) with spatial multiplexing, fast dynamic link adaptation and packet scheduling, wideband access techniques, and most likely non-contention based spectrum sharing among multiple operators. Many of these required technology components and techniques are well researched and established. Adaptive PHY-MAC Design for Broadband Wireless Systems explains how one can integrate and optimise their use in providing the target cell data rates with high availability. The authors address the ability to cope with interference and enhanced physical layer processing, and simultaneously, the multifaceted system level design. Focus is also on the selection of technology components and techniques, which leads to the highest spectral efficiency and peak data rate availability with reasonable Quality of Service (QoS) support, such as improved outage scenario, reduced delay, guaranteed bit rate, etc.In short, this book will answer questions such as, how individual techniques relate to each other, how can we benefit the gains by suitable combinations of different technologies and how to choose different technological solutions in different scenarios, etc.The next generation mobile communication networks (4G) have the challenging target of The next generation mobile communication networks (4G) have the challenging target of providing a peak data rate of 1 Gigabit per second local area and 100 Megabit per second wide area.
OFDM-based Broadband Wireless Networks covers the latest technological advances in digital broadcasting, wireless LAN, and mobile networks to achieve high spectral efficiency, and to meet peak requirements for multimedia traffic. The book emphasizes the OFDM modem, air-interface, medium access-control (MAC), radio link protocols, and radio network planning. An Instructor Support FTP site is available from the Wiley editorial department.
Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.
Do you need to know how to develop more efficient digital communication systems? Based on the author's experience of over thirty years in industrial design, this practical guide provides detailed coverage of synchronization subsystems and their relationship with other system components. Readers will gain a comprehensive understanding of the techniques needed for the design, performance analysis and implementation of synchronization functions for a range of different modern communication technologies. Specific topics covered include frequency-looked loops in wireless receivers, optimal OFDM timing phase determination and implementation, and interpolation filter design and analysis in digital resamplers. Numerous implementation examples help readers to develop the necessary practical skills, and slides summarizing key concepts accompany the book online. This is an invaluable guide and essential reference for both practicing engineers and graduate students working in digital communications.
MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE, Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n), wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). In MIMO-OFDM Wireless Communications with MATLAB®, the authors provide a comprehensive introduction to the theory and practice of wireless channel modeling, OFDM, and MIMO, using MATLAB® programs to simulate the various techniques on MIMO-OFDM systems. One of the only books in the area dedicated to explaining simulation aspects Covers implementation to help cement the key concepts Uses materials that have been classroom-tested in numerous universities Provides the analytic solutions and practical examples with downloadable MATLAB® codes Simulation examples based on actual industry and research projects Presentation slides with key equations and figures for instructor use MIMO-OFDM Wireless Communications with MATLAB® is a key text for graduate students in wireless communications. Professionals and technicians in wireless communication fields, graduate students in signal processing, as well as senior undergraduates majoring in wireless communications will find this book a practical introduction to the MIMO-OFDM techniques. Instructor materials and MATLAB® code examples available for download at www.wiley.com/go/chomimo
With the increased functionality demand for mobile speed and access in our everyday lives, broadband wireless networks have emerged as the solution in providing high data rate communications systems to meet these growing needs. Broadband Wireless Access Networks for 4G: Theory, Application, and Experimentation presents the latest trends and research on mobile ad hoc networks, vehicular ad hoc networks, and routing algorithms which occur within various mobile networks. This publication smartly combines knowledge and experience from enthusiastic scholars and expert researchers in the area of wideband and broadband wireless networks. Students, professors, researchers, and other professionals in the field will benefit from this book’s practical applications and relevant studies.