Download Free Symmetry And Exact Solutions Of Nonlinear Mathematical Physics Equations Book in PDF and EPUB Free Download. You can read online Symmetry And Exact Solutions Of Nonlinear Mathematical Physics Equations and write the review.

by spin or (spin s = 1/2) field equations is emphasized because their solutions can be used for constructing solutions of other field equations insofar as fields with any spin may be constructed from spin s = 1/2 fields. A brief account of the main ideas of the book is presented in the Introduction. The book is largely based on the authors' works [55-109, 176-189, 13-16, 7*-14*,23*, 24*] carried out in the Institute of Mathematics, Academy of Sciences of the Ukraine. References to other sources is not intended to imply completeness. As a rule, only those works used directly are cited. The authors wish to express their gratitude to Academician Yu.A. Mitropoi sky, and to Academician of Academy of Sciences of the Ukraine O.S. Parasyuk, for basic support and stimulation over the course of many years; to our cowork ers in the Department of Applied Studies, LA. Egorchenko, R.Z. Zhdanov, A.G. Nikitin, LV. Revenko, V.L Lagno, and I.M. Tsifra for assistance with the manuscript.
Separation of Variables and Exact Solutions to Nonlinear PDEs is devoted to describing and applying methods of generalized and functional separation of variables used to find exact solutions of nonlinear partial differential equations (PDEs). It also presents the direct method of symmetry reductions and its more general version. In addition, the authors describe the differential constraint method, which generalizes many other exact methods. The presentation involves numerous examples of utilizing the methods to find exact solutions to specific nonlinear equations of mathematical physics. The equations of heat and mass transfer, wave theory, hydrodynamics, nonlinear optics, combustion theory, chemical technology, biology, and other disciplines are studied. Particular attention is paid to nonlinear equations of a reasonably general form that depend on one or several arbitrary functions. Such equations are the most difficult to analyze. Their exact solutions are of significant practical interest, as they are suitable to assess the accuracy of various approximate analytical and numerical methods. The book contains new material previously unpublished in monographs. It is intended for a broad audience of scientists, engineers, instructors, and students specializing in applied and computational mathematics, theoretical physics, mechanics, control theory, chemical engineering science, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on partial differential equations, equations of mathematical physics, and methods of mathematical physics, for delivering special courses and for practical training.
Nonlinear problems, originating from applied science that is closely related to practices, contain rich and extensive content. It makes the corresponding nonlinear models also complex and diverse. Due to the intricacy and contingency of nonlinear problems, unified mathematical methods still remain far and few between. In this regard, the comprehensive use of symmetric methods, along with other mathematical methods, becomes an effective option to solve nonlinear problems.
This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems and those developing the theoretical aspects of conditional symmetry conception, parts of the book can also be used in master’s level mathematical biology courses.
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.
The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Lie group analysis, based on symmetry and invariance principles, is the only systematic method for solving nonlinear differential equations analytically. One of Lie's striking achievements was the discovery that the majority of classical devices for integration of special types of ordinary differential equations could be explained and deduced by his theory. Moreover, this theory provides a universal tool for tackling considerable numbers of differential equations when other means of integration fail. * This is the first modern text on ordinary differential equations where the basic integration methods are derived from Lie group theory * Includes a concise and self contained introduction to differential equations * Easy to follow and comprehensive introduction to Lie group analysis * The methods described in this book have many applications The author provides students and their teachers with a flexible text for undergraduate and postgraduate courses, spanning a variety of topics from the basic theory through to its many applications. The philosophy of Lie groups has become an essential part of the mathematical culture for anyone investigating mathematical models of physical, engineering and natural problems.
It is well known that symmetry-based methods are very powerful tools for investigating nonlinear partial differential equations (PDEs), notably for their reduction to those of lower dimensionality (e.g. to ODEs) and constructing exact solutions. This book is devoted to (1) search Lie and conditional (non-classical) symmetries of nonlinear RDC equations, (2) constructing exact solutions using the symmetries obtained, and (3) their applications for solving some biologically and physically motivated problems. The book summarises the results derived by the authors during the last 10 years and those obtained by some other authors.