Download Free Symmetry And Complexity Book in PDF and EPUB Free Download. You can read online Symmetry And Complexity and write the review.

Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.
Cosmic evolution leads from symmetry to complexity by symmetry breaking and phase transitions. The emergence of new order and structure in nature and society is explained by physical, chemical, biological, social and economic self-organization, according to the laws of nonlinear dynamics. All these dynamical systems are considered computational systems processing information and entropy. Are symmetry and complexity only useful models of science or are they universals of reality? Symmetry and Complexity discusses the fascinating insights gained from natural, social and computer sciences, philosophy and the arts. With many diagrams and pictures, this book illustrates the spirit and beauty of nonlinear science. In the complex world of globalization, it strongly argues for unity in diversity.
Symmetry and complexity are the focus of a selection of outstanding papers, ranging from pure Mathematics and Physics to Computer Science and Engineering applications. This collection is based around fundamental problems arising from different fields, but all of them have the same task, i.e. breaking the complexity by the symmetry. In particular, in this Issue, there is an interesting paper dealing with circular multilevel systems in the frequency domain, where the analysis in the frequency domain gives a simple view of the system. Searching for symmetry in fractional oscillators or the analysis of symmetrical nanotubes are also some important contributions to this Special Issue. More papers, dealing with intelligent prognostics of degradation trajectories for rotating machinery in engineering applications or the analysis of Laplacian spectra for categorical product networks, show how this subject is interdisciplinary, i.e. ranging from theory to applications. In particular, the papers by Lee, based on the dynamics of trapped solitary waves for special differential equations, demonstrate how theory can help us to handle a practical problem. In this collection of papers, although encompassing various different fields, particular attention has been paid to the common task wherein the complexity is being broken by the search for symmetry.
Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, Spin Glasses and Complexity also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts.
The principle of local activity explains the emergence of complex patterns in a homogeneous medium. At first defined in the theory of nonlinear electronic circuits in a mathematically rigorous way, it can be generalized and proven at least for the class of nonlinear reaction-diffusion systems in physics, chemistry, biology, and brain research. Recently, it was realized by memristors for nanoelectronic device applications. In general, the emergence of complex patterns and structures is explained by symmetry breaking in homogeneous media, which is caused by local activity. This book argues that the principle of local activity is really fundamental in science, and can even be identified in quantum cosmology as symmetry breaking of local gauge symmetries generating the complexity of matter and forces in our universe. Applications are considered in economic, financial, and social systems with the emergence of equilibrium states, symmetry breaking at critical points of phase transitions and risky acting at the edge of chaos./a
Symmetry and complexity are studied by a selection of outstanding papers ranging from pure Mathematics and Physics to Computer Science and Engineering applications. In this Special Issue, the authors give a short but intensive description of the many applications of the basic structure of symmetry and complexity in many fields. Some interesting results were given in the Hydrodynamic Analysis of 3-D Hydrofoil and Marine Propeller and in the SAT Problems. The Study on Hypergraph Representations of Complex Fuzzy Information shows the importance of methods based on symmetry and complexity. A deep study of Information Technology Services in Public Organizations has been given in this issue, together with some interesting papers dealing with Adaptive Block Truncation Coding Based on an Edge-Based Quantization, SIR Model in a Patchy Environment, and the Evolution of Conformity Dynamics in Complex Social Networks. Another interesting paper provides some new insights into the Novel Computational Technique for Impulsive Fractional Differential Equations. In this collection, An Intelligent Approach for Handling Complexity by Migrating from Conventional Databases to Big Data shows the importance of such topics related to complexity.