Download Free Symmetries And Dynamics Of Star Clusters Book in PDF and EPUB Free Download. You can read online Symmetries And Dynamics Of Star Clusters and write the review.

In this PhD thesis, which was nominated for publication in this series by the Astronomical Institute at Charles University, Prague, the author investigates the orbital evolution of an initially thin stellar disc around a supermassive black hole, considering various perturbative sources of gravity. His findings, obtained by both direct numerical N-body modelling and using standard perturbation methods, offer a viable theoretical explanation for the observed configuration of young stars in the Galactic Centre. This marks a significant contribution to a topic of great interest in contemporary astrophysics. The author also shows in his thesis that a secular instability (m = 1 mode) may occur in the embedding spherical cluster of old stars. This increases the richness of possible evolution scenarios of the embedding cluster and may lead to effective feeding of supermassive black holes through tidal disruption of stars on extremely eccentric orbits.
In this classic text, a Nobel Prize-winning astrophysicist presents the theory of stellar dynamics as a branch of classical dynamics--a discipline in the same general category as celestial mechanics. His method offers the advantages of clarifying the theory's fundamental issues and defining its underlying motivations. S. Chandrasekhar investigates two areas. The first concerns problems in which the time of relaxation of a stellar system is central. His method consists of analyzing the effects of stellar encounters in terms of the two-body problem of classical dynamics and applying this theory to the dynamics of star clusters. The second area investigates problems centering around Liouville's theorem and the solutions of the equation of continuity; here, the author discusses the dynamic implications of the existence of a field of differential motions, which appears to be the most striking kinematic feature of the galaxy and the extragalactic systems. This edition includes two papers by the author that were published after Principles of Stellar Dynamics and that have been studied and quoted extensively: "New Methods in Stellar Dynamics" (originally published in the Annals of the New York Academy of Sciences) and "Dynamical Friction" (originally published in The Astrophysical Journal).
Symmetry 2 aims to present an overview of the contemporary status of symmetry studies, particularly in the arts and sciences, emphasizing both its role and importance. Symmetry is not only one of the fundamental concepts in science, but is also possibly the best unifying concept between various branches of science, the arts and other human activities. Whereas symmetry has been considered important for centuries primarily for its aesthetic appeal, this century has witnessed a dramatic enhancement of its status as a cornerstone in the sciences. In addition to traditionally symmetry-oriented fields such as crystallography and spectroscopy, the concept has made headway in fields as varied as reaction chemistry, nuclear physics, and the study of the origin of the universe. The book was initiated in response to the success of the first volume, which not only received good reviews, but received the award for "The Best Single Issue of a Journal" by the Association of American Publishers for 1986. The second volume extends the application of symmetry to new fields, such as medical sciences and economics, as well as investigating further certain topics introduced in Symmetry. The book is extensively illustrated and with over 64 contributions from 16 countries presents an international overview of the nature and diversity of symmetry studies today.
Astronomy and Astrophysics Abstracts, which has appeared in semi-annual volumes since 1969, is de voted to the recording, summarizing and indexing of astronomical publications throughout the world. It is prepared under the auspices of the International Astronomical Union (according to a resolution adopted at the 14th General Assembly in 1970). Astronomy and Astrophysics Abstracts aims to present a comprehensive documentation of literature in all fields of astronomy and astrophysics. Every effort will be made to ensure that the average time interval between the date of receipt of the original literature and publication of the abstracts will not exceed eight months. This time interval is near to that achieved by monthly abstracting journals, com pared to which our system of accumulating abstracts for about six months offers the advantage of greater convenience for the user. Volume 18 contains literature published in 1976 and received before March 1, 1977; some older liter ature which was received late and which is not recorded in earlier volumes is also included.
Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers. Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject. This new edition of the classic text is the definitive introduction to the field. ? A complete revision and update of one of the most cited references in astrophysics Provides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systems Serves as both a graduate textbook and a resource for researchers Includes 20 color illustrations, 205 figures, and more than 200 problems Covers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much more Companion volume to Galactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters
Galaxies, along with their underlying dark matter halos, constitute the building blocks of structure in the Universe. Of all fundamental forces, gravity is the dominant one that drives the evolution of structures from small density seeds at early times to the galaxies we see today. The interactions among myriads of stars, or dark matter particles, in a gravitating structure produce a system with fascinating connotations to thermodynamics, with some analogies and some fundamental differences. Ignacio Ferreras presents a concise introduction to extragalactic astrophysics, with emphasis on stellar dynamics, and the growth of density fluctuations in an expanding Universe. Additional chapters are devoted to smaller systems (stellar clusters) and larger ones (galaxy clusters). Fundamentals of Galaxy Dynamics, Formation and Evolution is written for advanced undergraduates and beginning postgraduate students, providing a useful tool to get up to speed in a starting research career. Some of the derivations for the most important results are presented in detail to enable students appreciate the beauty of maths as a tool to understand the workings of galaxies. Each chapter includes a set of problems to help the student advance with the material.
This is the definitive treatment of the phenomenology of galaxies--a clear and comprehensive volume that takes full account of the extraordinary recent advances in the field. The book supersedes the classic text Galactic Astronomy that James Binney wrote with Dimitri Mihalas, and complements Galactic Dynamics by Binney and Scott Tremaine. It will be invaluable to researchers and is accessible to any student who has a background in undergraduate physics. The book draws on observations both of our own galaxy, the Milky Way, and of external galaxies. The two sources are complementary, since the former tends to be highly detailed but difficult to interpret, while the latter is typically poorer in quality but conceptually simpler to understand. Binney and Merrifield introduce all astronomical concepts necessary to understand the properties of galaxies, including coordinate systems, magnitudes and colors, the phenomenology of stars, the theory of stellar and chemical evolution, and the measurement of astronomical distances. The book's core covers the phenomenology of external galaxies, star clusters in the Milky Way, the interstellar media of external galaxies, gas in the Milky Way, the structure and kinematics of the stellar components of the Milky Way, and the kinematics of external galaxies. Throughout, the book emphasizes the observational basis for current understanding of galactic astronomy, with references to the original literature. Offering both new information and a comprehensive view of its subject, it will be an indispensable source for professionals, as well as for graduate students and advanced undergraduates.
The book compiles works presented at a seminar aiming to attract global experts in differential equations, mathematical modeling, and integration methods. It covers classical and contemporary integration techniques for partial differential equations, including Monge and Darboux's approaches and their extensions. Additionally, it introduces a novel theoretical model for plane turbulent flows, presents gravitational equations derived from the principle of least action, and explores symmetry-preserving conservative finite-difference schemes for hydrodynamic-type equations. Analytical solutions for Maxwell's equations in incompressible viscoelastic mediums are examined, alongside theoretical-group analysis of wake mathematical models and reduction to ordinary differential equations. The book also delves into special classes of two-dimensional ideal fluid motion and advancements in discrete orthogonal polynomial theory, showcasing rapid decay properties near interval boundaries. In conclusion, this comprehensive collection is indispensable for researchers and practitioners in applied mathematics, fluid dynamics, and computational modeling, providing valuable insights into cutting-edge methods and solutions in the field.
This book provides a comprehensive survey of the development of the theory of scale relativity and fractal space-time. It suggests an original solution to the disunified nature of the classical-quantum transition in physical systems, enabling the basis of quantum mechanics on the principle of relativity, provided this principle is extended to scale transformations of the reference system. In the framework of such a newly generalized relativity theory (including position, orientation, motion and now scale transformations), the fundamental laws of physics may be given a general form that unifies and thus goes beyond the classical and quantum regimes taken separately. A related concern of this book is the geometry of space-time, which is described as being fractal and nondifferentiable. It collects and organizes theoretical developments and applications in many fields, including physics, mathematics, astrophysics, cosmology and life sciences.