Download Free Switch Router Architectures Book in PDF and EPUB Free Download. You can read online Switch Router Architectures and write the review.

A practicing engineer's inclusive review of communication systems based on shared-bus and shared-memory switch/router architectures This book delves into the inner workings of router and switch design in a comprehensive manner that is accessible to a broad audience. It begins by describing the role of switch/routers in a network, then moves on to the functional composition of a switch/router. A comparison of centralized versus distributed design of the architecture is also presented. The author discusses use of bus versus shared-memory for communication within a design, and also covers Quality of Service (QoS) mechanisms and configuration tools. Written in a simple style and language to allow readers to easily understand and appreciate the material presented, Switch/Router Architectures: Shared-Bus and Shared-Memory Based Systems discusses the design of multilayer switches—starting with the basic concepts and on to the basic architectures. It describes the evolution of multilayer switch designs and highlights the major performance issues affecting each design. It addresses the need to build faster multilayer switches and examines the architectural constraints imposed by the various multilayer switch designs. The book also discusses design issues including performance, implementation complexity, and scalability to higher speeds. This resource also: Summarizes principles of operation and explores the most common installed routers Covers the design of example architectures (shared bus and memory based architectures), starting from early software based designs Provides case studies to enhance reader comprehension Switch/Router Architectures: Shared-Bus and Shared-Memory Based Systems is an excellent guide for advanced undergraduate and graduate level students, as well for engineers and researchers working in the field.
Crossbar switch fabrics offer many benefits when designing switch/routers. This book discusses switch/router architectures using design examples and case studies of well-known systems that employ crossbar switch fabric as their internal interconnects. This book looks to explain the design of switch/routers from a practicing engineer’s perspective. It uses a broad range of design examples to illustrate switch/router designs and provides case studies to enhance readers comprehension of switch/router architectures. The book goes on to discuss industry best practices in switch/router design and explains the key features and differences between unicast and multicast packet forwarding architectures. This book will be of benefit to telecoms/networking industry professionals and engineers as well as researchers and academics looking for more practical and efficient approaches for designing non-blocking crossbar switch fabrics.
Network routing can be broadly categorized into Internet routing, PSTN routing, and telecommunication transport network routing. This book systematically considers these routing paradigms, as well as their interoperability. The authors discuss how algorithms, protocols, analysis, and operational deployment impact these approaches. A unique feature of the book is consideration of both macro-state and micro-state in routing; that is, how routing is accomplished at the level of networks and how routers or switches are designed to enable efficient routing. In reading this book, one will learn about 1) the evolution of network routing, 2) the role of IP and E.164 addressing in routing, 3) the impact on router and switching architectures and their design, 4) deployment of network routing protocols, 5) the role of traffic engineering in routing, and 6) lessons learned from implementation and operational experience. This book explores the strengths and weaknesses that should be considered during deployment of future routing schemes as well as actual implementation of these schemes. It allows the reader to understand how different routing strategies work and are employed and the connection between them. This is accomplished in part by the authors' use of numerous real-world examples to bring the material alive. Bridges the gap between theory and practice in network routing, including the fine points of implementation and operational experience Routing in a multitude of technologies discussed in practical detail, including, IP/MPLS, PSTN, and optical networking Routing protocols such as OSPF, IS-IS, BGP presented in detail A detailed coverage of various router and switch architectures A comprehensive discussion about algorithms on IP-lookup and packet classification Accessible to a wide audience due to its vendor-neutral approach
Crossbar switch fabrics offer many benefits when designing switch/routers. This book discusses switch/router architectures using design examples and case studies of well-known systems that employ crossbar switch fabric as their internal interconnects. This book looks to explain the design of switch/routers from a practicing engineer’s perspective. It uses a broad range of design examples to illustrate switch/router designs and provides case studies to enhance readers comprehension of switch/router architectures. The book goes on to discuss industry best practices in switch/router design and explains the key features and differences between unicast and multicast packet forwarding architectures. This book will be of benefit to telecoms/networking industry professionals and engineers as well as researchers and academics looking for more practical and efficient approaches for designing non-blocking crossbar switch fabrics.
As Internet traffic grows and demands for quality of service become stringent, researchers and engineers can turn to this go-to guide for tested and proven solutions. This text presents the latest developments in high performance switches and routers, coupled with step-by-step design guidance and more than 550 figures and examples to enable readers to grasp all the theories and algorithms used for design and implementation.
As Internet traffic grows and demands for quality of service become stringent, researchers and engineers can turn to this go-to guide for tested and proven solutions. This text presents the latest developments in high performance switches and routers, coupled with step-by-step design guidance and more than 550 figures and examples to enable readers to grasp all the theories and algorithms used for design and implementation.
Internet traffic is increasing by at least 200% per year and this is the first book to report on the current state-of-the-art of packet-switching architectures. The book to covers the subject in a comprehensive survey and presents contributions from the leading researchers in industry and universities. A mix of theoretical and practical material makes this book an essential reference for researchers in academia as well as industrial engineers.
An essential guide to understanding the Cisco IOS architecture In-depth coverage of Cisco's IOS Software architecture provides crucial information to: Prevent network problems and optimize performance through more efficient design and configuration Isolate and resolve network problems more quickly and easily Apply the appropriate packet switching method, such as process switching, fast switching, optimum switching, or Cisco Express Forwarding (CEF) Understand the hardware architecture, packet buffering, and packet switching processes for shared memory routers (Cisco 1600, 2500, 3600, 4000, 4500, and 4700 series) Understand the hardware architecture, packet buffering, and packet switching processes for the Cisco 7200 series routers Understand the hardware architecture, packet buffering, and packet switching processes for the Cisco 7500 series routers Understand the hardware architecture, packet buffering, and packet switching processes for the Cisco GSR 12000 series routers Further your knowledge of how IOS Software implements Quality of Service (QoS) Inside Cisco IOS Software Architecture offers crucial and hard-to-find information on Cisco's Internetwork Operating System (IOS) Software. IOS Software provides the means by which networking professionals configure and manage Cisco networking devices. Beyond understanding the Cisco IOS command set, comprehending what happens inside Cisco routers will help you as a network designer or engineer to perform your job more effectively. By understanding the internal operations of IOS Software, you will be able to take architectural considerations into account when designing networks and isolate problems more easily when troubleshooting networks. Inside Cisco IOS Software Architecture provides essential information on the internal aspects of IOS Software at this level, and it is an invaluable resource for better understanding the intricacies of IOS Software and how it affects your network. Inide Cisco IOS Software Architecture begins with an overview of operating system concepts and the IOS Software infrastructure, including processes, memory management, CPU scheduling, packet buffers, and device drivers, as well as a discussion of packet switching architecture with detailed coverage of the various platform-independent switching methods, including process switching, fast switching, optimum switching, and Cisco Express Forwarding (CEF). The book then delves into the intricate details of the design and operation of platform-specific features, including the 1600, 2500, 4x00, 3600, 7200, 7500, and GSR Cisco routers. Finally, an overview of IOS Quality of Service (QoS) is provided, including descriptions of several QoS methods, such as priority queuing, custom queuing, weighted fair queuing, and modified deficit round robin.
Routers, switches, and transmission equipment form the backbone of the Internet, yet many users and service technicians do not understand how these nodes really work. Advanced Router Architectures addresses how components of advanced routers work together and how they are integrated with each other. This book provides the background behind why these building blocks perform certain functions, and how the function is implemented in general use. It offers an introduction to the subject matter that is intended to trigger deeper interest from the reader. The book explains, for example, why traffic management may be important in certain applications, what the traffic manager does, and how it connects to the rest of the router. The author also examines the implications of the introduction or omission of a traffic manager into an advanced router. The text offers a similar analysis for other router topics such as QOS and policy enforcement, security processing (including DoS/DDoS), and more. This book covers which mandatory and which optional building blocks can be found in an advanced router, and how these building blocks operate in conjunction to ensure that the Internet performs as expected.
Go beyond layer 2 broadcast domains with this in-depth tour of advanced link and internetwork layer protocols, and learn how they enable you to expand to larger topologies. An ideal follow-up to Packet Guide to Core Network Protocols, this concise guide dissects several of these protocols to explain their structure and operation. This isn’t a book on packet theory. Author Bruce Hartpence built topologies in a lab as he wrote this guide, and each chapter includes several packet captures. You’ll learn about protocol classification, static vs. dynamic topologies, and reasons for installing a particular route. This guide covers: Host routing—Process a routing table and learn how traffic starts out across a network Static routing—Build router routing tables and understand how forwarding decisions are made and processed Spanning Tree Protocol—Learn how this protocol is an integral part of every network containing switches Virtual Local Area Networks—Use VLANs to address the limitations of layer 2 networks Trunking—Get an indepth look at VLAN tagging and the 802.1Q protocol Routing Information Protocol—Understand how this distance vector protocol works in small, modern communication networks Open Shortest Path First—Discover why convergence times of OSPF and other link state protocols are improved over distance vectors