Download Free Swarm Intelligence Based Adaptive Signal System Book in PDF and EPUB Free Download. You can read online Swarm Intelligence Based Adaptive Signal System and write the review.

This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Industrial Networks and Intelligent Systems, INISCOM 2017, held in Ho chi Minh City, Vietnam, in September 2017. The 31 revised full papers carefully reviewed and selected from 45 submissions. The papers cover topics on telecommunications systems and networks, intelligent systems, industrial networks, and applications, computer science, security and privacy, hardware and software design.
This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intelligence and working on these topics.
Roughly half of all electricity generated is consumed in motors, and recent efforts to apply artificial intelligence (AI) to improving electric motors are receiving attention worldwide. At present two industrial drives incorporate some form of AI. This book is the first comprehensive discussion of AI applications to electrical machines and drives. It looks at d.c. drives, induction motor drives, synchronous motor drives, switched reluctance motor drives, and sensorless drives. It combines simple explanations of AI-based systems with detailed and unified mathematical and physical treatments, and it includes numerous worked examples, simulations, and experimental results.
Social insects--ants, bees, termites, and wasps--can be viewed as powerful problem-solving systems with sophisticated collective intelligence. Composed of simple interacting agents, this intelligence lies in the networks of interactions among individuals and between individuals and the environment. A fascinating subject, social insects are also a powerful metaphor for artificial intelligence, and the problems they solve--finding food, dividing labor among nestmates, building nests, responding to external challenges--have important counterparts in engineering and computer science. This book provides a detailed look at models of social insect behavior and how to apply these models in the design of complex systems. The book shows how these models replace an emphasis on control, preprogramming, and centralization with designs featuring autonomy, emergence, and distributed functioning. These designs are proving immensely flexible and robust, able to adapt quickly to changing environments and to continue functioning even when individual elements fail. In particular, these designs are an exciting approach to the tremendous growth of complexity in software and information. Swarm Intelligence draws on up-to-date research from biology, neuroscience, artificial intelligence, robotics, operations research, and computer graphics, and each chapter is organized around a particular biological example, which is then used to develop an algorithm, a multiagent system, or a group of robots. The book will be an invaluable resource for a broad range of disciplines.
This book constitutes the proceedings of the 11th International Conference on Advances in Swarm Intelligence, ICSI 2020, held in July 2020 in Belgrade, Serbia. Due to the COVID-19 pandemic the conference was held virtually. The 63 papers included in this volume were carefully reviewed and selected from 127 submissions. The papers are organized in 12 cohesive topical sections as follows: Swarm intelligence and nature-inspired computing; swarm-based computing algorithms for optimization; particle swarm optimization; ant colony optimization; brain storm optimization algorithm; bacterial foraging optimization; genetic algorithm and evolutionary computation; multi-objective optimization; machine learning; data mining; multi-agent system and robotic swarm, and other applications.
Companies and organizations everywhere cite creativity as the most desirable - and elusive - leadership quality of the future. Yet scores measuring creativity among American children have been on the wane for decades. A specialist in creative leadership, professor James Haywood Rolling, Jr. knows firsthand that the classroom is a key to either unlocking or blocking the critical imagination. He argues that today's schools, with their focus on rote learning and test-taking, work to stymie creativity, leaving children cut off from their natural impulses and boxed in by low expectations. Drawing on cutting-edge research in the realms of biological swarm theory, systems theory, and complexity theory, Rolling shows why group collaboration and adaptive social networking make us both smarter and more creative, and how we can design education and workplace practices around these natural principles, instead of pushing a limited focus on individual achievement that serves neither children nor their future colleagues, managers and mentors. The surprising truth is that the future will be pioneered by the collective problem-solvers, making Swarm Intelligence a must-read for business leaders, educators, and anyone else concerned with nurturing creative intelligence and innovative habits in today's youth.
With the increasing applications of intelligent robotic systems in various ?elds, the - sign and control of these systems have increasingly attracted interest from researchers. This edited book entitled “Design and Control of Intelligent Robotic Systems” in the book series of “Studies in Computational Intelligence” is a collection of some advanced research on design and control of intelligent robots. The works presented range in scope from design methodologies to robot development. Various design approaches and al- rithms, such as evolutionary computation, neural networks, fuzzy logic, learning, etc. are included. We also would like to mention that most studies reported in this book have been implemented in physical systems. An overview on the applications of computational intelligence in bio-inspired robotics is given in Chapter 1 by M. Begum and F. Karray, with highlights of the recent progress in bio-inspired robotics research and a focus on the usage of computational intelligence tools to design human-like cognitive abilities in the robotic systems. In Chapter 2, Lisa L. Grant and Ganesh K. Venayagamoorthy present greedy search, particle swarm optimization and fuzzy logic based strategies for navigating a swarm of robots for target search in a hazardous environment, with potential applications in high-risk tasks such as disaster recovery and hazardous material detection.
With growing developments in artificial intelligence and focus on swarm behaviors; algorithms have been utilized in solving a variety of problems in the field of engineering. This approach has been specifically suited to face the challenges in electric and electronic engineering. Swarm Intelligence for Electric and Electronic Engineering provides an exchange of knowledge on the advances, discoveries, and improvements of swarm intelligence in electric and electronic engineering. This comprehensive collection aims to bring together new swarm-based algorithms as well as approaches to complex problems and various real-world applications.
An overarching framework for comparing and steering complex adaptive systems is developed through understanding the mechanisms that generate their intricate signal/boundary hierarchies.
The two-volume set of LNCS 10941 and 10942 constitutes the proceedings of the 9th International Conference on Advances in Swarm Intelligence, ICSI 2018, held in Shanghai, China, in June 2018. The total of 113 papers presented in these volumes was carefully reviewed and selected from 197 submissions. The papers were organized in topical sections as follows: theories and models of swarm intelligence; ant colony optimization; particle swarm optimization; artificial bee colony algorithms; genetic algorithms; differential evolution; fireworks algorithms; bacterial foraging optimization; artificial immune system; hydrologic cycle optimization; other swarm-based optimization algorithms; hybrid optimization algorithms; multi-objective optimization; large-scale global optimization; multi-agent systems; swarm robotics; fuzzy logic approaches; planning and routing problems; recommendation in social media; prediction, classification; finding patterns; image enhancement; deep learning.