Download Free Sustainable Production Of Biofuels Using Intensified Processes Book in PDF and EPUB Free Download. You can read online Sustainable Production Of Biofuels Using Intensified Processes and write the review.

This book describes for first time the synthesis and intensified process design in the production of top biofuels. The production of biofuels is not new. In 2019, global biofuel production levels reached 1,841 thousand barrels of oil equivalent per day, in stark comparison to the 187 thousand barrels of oil equivalent per day that was produced in 2000. Growth has largely been driven by policies that encourage the use and production of biofuels due to the perception that it could provide energy security and reduce greenhouse gas emissions in relevant sectors. From a technical point of view, almost all fuels from fossil resources could be substituted by their bio-based counterparts. However, the cost of bio-based production in many cases exceeds the cost of petrochemical production. Also, biofuels must be proven to perform at least as good as the petrochemical equivalent they are substituting and to have a lower environmental impact. The low price of crude oil acted as a barrier to biofuels production and producers focussed on the specific attributes of biofuels such as their complex structure to justify production costs. Also, the consumer demand for environmentally friendly products, population growth and limited supplies of non-renewable resources has now opened new windows of opportunity for biofuels. The industry is increasingly viewing chemical production from renewable resources as an attractive area for investment. This book uniquely introduces the application of new process intensification techniques that will allow the generation of clean, efficient and economical processes for biofuels in a competitive way in the market.
Improvements in Bio-Based Building Blocks Production Through Process Intensification and Sustainability Concepts discusses new information on the production and cost of bio-based building blocks. From a technical point-of-view, almost all industrial materials made from fossil resources can be substituted using bio-based counterparts. However, the cost of bio-based production in many cases exceeds the cost of petrochemical production. In addition, new products must be proven to perform at least as good as their petrochemical equivalents, have a lower environmental impact, meet consumer demand for environmentally-friendly products, factor in population growth, and account for limited supplies of non-renewables. This book outlines the application of process intensification techniques which allow for the generation of clean, efficient and economical processes for bio-based chemical blocks production. - Includes synthesis and process design strategies for intensified processes - Describes multi-objective optimization applied to the production of bio-based building blocks - Presents the controllability of processes where the production of bio-based building blocks is involved - Provides examples using aspen and MATLAB - Introduces several sustainable indexes to evaluate production processes - Presents process intensification techniques to improve performance in productive processes
Biofuels and Biorefining: Volume Two: Intensified Processes and Biorefineries considers intensification and optimization processes for biofuels and biomass-derived products in single and biorefinery schemes. Chapters cover production processes for liquid biofuels, introducing all feasible intensification alternatives for each process, process intensification methods for the production of value-added products, the importance of detailed CFD-based studies, controllability studies, strategies for risk analysis in intensified processes, the concept of biorefinery for the co-production of biofuels/biomass derived value-added products, and the importance of process intensification in the biorefinery scheme. Final chapters discuss how to ensure the sustainability of the intensified process and minimize the societal impact of biorefineries through various strategies, including supply chain optimization and lifecycle analysis. Each chapter is supported by industry case studies that address key aspects and impacts of intensification and optimization processes. - Integrates basic concepts of process intensification and its application to the production of biofuels in a single resource - Includes case studies related to modeling, safety, control, supply chain, lifecycle analysis, and the CFD of biofuel production processes - Provides a sustainability assessment of biorefinery systems from a lifecycle perspective
Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.
A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this book is an indispensable guide to the newest developments in areas including: Enzyme-catalyzed biodiesel production Process analysis of biodiesel production (including kinetic modeling, simulation and optimization) The use of ultrasonification in biodiesel production Thermochemical processes for biomass transformation to biofuels Production of alternative biofuels In addition to the comprehensive overview of the subject of biofuels found in the Introduction of the book, the authors of various chapters have provided extensive discussions of the production and separation of biofuels via novel applications and techniques.
Handbook of Algal Biofuels: Aspects of Cultivation, Conversion and Biorefinery comprehensively covers the cultivation, harvesting, conversion, and utilization of microalgae and seaweeds for different kinds of biofuels. The book addresses four main topics in the algal biofuel value-chain. First, it explores algal diversity and composition, covering micro- and macroalgal diversity, classification, and composition, their cultivation, biotechnological applications, current use within industry for biofuels and value-added products, and their application in CO2 sequestration, wastewater treatment, and water desalination. Next, the book addresses algal biofuel production, presenting detailed guidelines and protocols for different production routes of biodiesel, biogas, bioethanol, biobutanol, biohydrogen, jet fuel, and thermochemical conversation methods. Then, the authors discuss integrated approaches for enhanced biofuel production. This includes updates on the recent advances, breakthroughs, and challenges of algal biomass utilization as a feedstock for alternative biofuels, process intensification techniques, life cycle analysis, and integrated approaches such as wastewater treatment with CO2 sequestration using cost-effective and eco-friendly techniques. In addition, different routes for waste recycling for enhanced biofuel production are discussed alongside economic analyses. Finally, this book presents case studies for algal biomass and biofuel production including BIQ algae house, Renewable Energy Laboratory project, Aquatic Species Program, and the current status of algal industry for biofuel production. Handbook of Algal Biofuels offers an all-in-one resource for researchers, graduate students, and industry professionals working in the areas of biofuels and phycology and will be of interest to engineers working in renewable energy, bioenergy, alternative fuels, biotechnology, and chemical engineering. Furthermore, this book includes structured foundational content on algae and algal biofuels for undergraduate and graduate students working in biology and life sciences. - Provides complete coverage of the biofuel production process, from cultivation to biorefinery - Includes a detailed discussion of process intensification, lifecycle analysis and biofuel byproducts - Describes key aspects of algal diversity and composition, including their cultivation, harvesting and advantages over conventional biomass
In recent years bioprocessing has increased in popularity and importance, however, bioprocessing still poses various important techno-economic and environmental challenges, such as product yields, excessive energy consumption for separations in highly watery systems, batch operation or the downstream processing bottlenecks in the production of biopharmaceutical products. Many of those challenges can be addressed by application of different process intensification technologies discussed in the present book. The first book dedicated entirely to this area, Intensification of Biobased Processes provides a comprehensive overview of modern process intensification technologies used in bioprocessing. The book focusses on four different categories of biobased products: bio-fuels and platform chemicals; cosmeceuticals; food products; and polymers and advanced materials. It will cover various intensification aspects of the processes concerned, including (bio)reactor intensification; intensification of separation, recovery and formulation operations; and process integration. This is an invaluable source of information for researchers and industrialists working in chemical engineering, biotechnology and process engineering.
The first book dedicated entirely to this area, Intensification of Biobased Processes provides a comprehensive overview of modern process intensification technologies used in bioprocessing.
A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this book is an indispensable guide to the newest developments in areas including: Enzyme-catalyzed biodiesel production Process analysis of biodiesel production (including kinetic modeling, simulation and optimization) The use of ultrasonification in biodiesel production Thermochemical processes for biomass transformation to biofuels Production of alternative biofuels In addition to the comprehensive overview of the subject of biofuels found in the Introduction of the book, the authors of various chapters have provided extensive discussions of the production and separation of biofuels via novel applications and techniques.