Download Free Sustainable Energy Systems On Ships Book in PDF and EPUB Free Download. You can read online Sustainable Energy Systems On Ships and write the review.

Completely revised and updated, Principles of Sustainable Energy Systems, Second Edition presents broad-based coverage of sustainable energy sources and systems. The book is designed as a text for undergraduate seniors and first-year graduate students. It focuses on renewable energy technologies, but also treats current trends such as the expanding use of natural gas from fracking and development of nuclear power. It covers the economics of sustainable energy, both from a traditional monetary as well as from an energy return on energy invested (EROI) perspective. The book provides complete and up-to-date coverage of all renewable technologies, including solar and wind power, biological processes such as anaerobic digestion and geothermal energy. The new edition also examines social issues such as food, water, population, global warming, and public policies of engineering concern. It discusses energy transition—the process by which renewable energy forms can effectively be introduced into existing energy systems to replace fossil fuels. See What’s New in the Second Edition: Extended treatment of the energy and social issues related to sustainable energy Analytic models of all energy systems in the current and future economy Thoroughly updated chapters on biomass, wind, transportation, and all types of solar power Treatment of energy return on energy invested (EROI) as a tool for understanding the sustainability of different types of resource conversion and efficiency projects Introduction of the System Advisor Model (SAM) software program, available from National Renewable Energy Lab (NREL), with examples and homework problems Coverage of current issues in transition engineering providing analytic tools that can reduce the risk of unsustainable fossil resource use Updates to all chapters on renewable energy technology engineering, in particular the chapters dealing with transportation, passive design, energy storage, ocean energy, and bioconversion Written by Frank Kreith and Susan Krumdieck, this updated version of a successful textbook takes a balanced approach that looks not only at sustainable energy sources, but also provides examples of energy storage, industrial process heat, and modern transportation. The authors take an analytical systems approach to energy engineering, rather than the more general and descriptive approach usually found in textbooks on this topic.
Sustainable Energy Systems on Ships is a comprehensive technical reference for all aspects of energy efficient shipping. The book discusses the technology options to make shipping energy consumption greener, focusing on the smarter integration of energy streams, the introduction of renewable resources and the improvement of control and operability. Chapters not only describe each technology individually, but also analyze their interconnections when implemented onboard, and compare them in terms of suitability for different vessels and economic viability. Readers of Sustainable Energy Systems on Ships will find an invaluable reference suitable for researchers, professionals, and managers involved in the shipping industry and those working on related energy efficiency technologies, fuel cells, and in the transport industry generally. Students of maritime engineering will also be well served by this reference. - Clear analysis of the current implementation status of each technology discussed, the barriers for further development, and the potential for large-scale implementation - Enables decision-making on the most suitable technologies for each type of vessel - Integrates energy efficiency and emission control rules, regulations, technologies (including data science), and challenges in relation to the shipping industry - Includes industry case studies on the integration of novel energy conversion technologies and renewable energy sources in operating ships
The concept of sustainable development was first introduced by the Brundtland Commission almost 20 years ago and has received increased attention during the past decade. It is now an essential part of any energy activities. This is a research-based textbook which can be used by senior undergraduate students, graduate students, engineers, practitioners, scientists, researchers in the area of sustainable energy systems and aimed to address some key pillars: better efficiency, better cost effectiveness, better use of energy resources, better environment, better energy security, and better sustainable development. It also includes some cutting-edge topics, such hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools (exergy, constructal theory, etc.) for design, analysis and performance improvement.
Energy engineers, technology managers, and political leaders all need a solid, holistic understanding of where the world finds its energy--the limits of that energy--and what we will need to do in the future if we are to have a cleaner and environmentally sustainable world, all without sacrificing our modern technological-based civilization. This book will shed some much needed light on that conundrum. It * Provides a broad overview of our current energy sources, their uses and limitations and political and economic constraints * Clarifies the urgency behind the sweeping changes in the world's energy needs and available supplies * Offers a rational paradigm for how we can go about selecting the optimal mix of fossil, renewable and sustainable energy sources and how we can then aggressively move toward those more sustainable sources Drawing from a combined 40 years of teaching about energy and its applications, the authors offer a broad, balanced analysis of our current energy circumstances and how we can intelligently transition from our reliance on fossil fuels to more sustainable and renewable energy sources--solar, wind, nuclear, and bio-mass. With their grounding in the traditional petroleum industries, the authors embed their arguments for cleaner and more sustainable energy sources in the hard realities of energy economics. Those hard realities include the enormous "energy density" advantage that oil and gas currently provide over other alternative energies and how that must always enter into any rationale economic plan for future energy growth.
In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at understanding how major technological changes, such as renewable energy, can be implemented at both the national and international levels. - Provides an introduction to the technical design of renewable energy systems - Demonstrates how to analyze the feasibility and efficiency of large-scale systems to help implementers avoid costly trial and error - Addresses the socio-political challenge of implementing the shift to renewables - Features a dozen extensive case studies from around the globe that provide real-world templates for new installations
Water covers more than 70% of the Earth’s surface, making maritime influences an important consideration in evaluating modern global economic systems. Therefore, the efficient design, operation, and management of maritime systems are important for sustainable marine technology development and green innovation. Marine Technology and Sustainable Development: Green Innovations examines theoretical frameworks and empirical research in the maritime industry, evaluating new technologies, methodologies, and practices against a backdrop of sustainability. This critical reference encourages the discussion and exploration of diverse opinions on the benefits and challenges of new marine technologies essential for marine and maritime professionals, researchers, and scholars hoping to improve their understanding of environmental considerations in preserving the world’s oceanic resources.
Thanks to economic incentives such as tax credits, green building has become a booming trend in the construction industry. This title is intended for electrical engineers, construction managers, construction and building inspectors.
Im Zentrum vieler Debatten zum Klimawandel steht die Diskrepanz zwischen dem weltweit wachsenden Energieverbrauch auf der einen und der Begrenztheit fossiler Ressourcen auf der anderen Seite. Erneuerbare Energien werden immer wieder als Schlüssel zur Lösung dieses Problems benannt. Doch beurteilen, ob und in welchem Umfang sie dies wirklich sind, kann man nur auf der Grundlage fundierter Informationen. Genau diese bietet der vorliegende Band. Die Autoren, führende Experten ihres Fachs, erklären verständlich, wie sich aus Wind und Sonne Energie gewinnen lässt, wie geothermische Energie nutzbar gemacht werden kann oder wie Wellenkraftwerke funktionieren. Die Herausgeber, beide Autoren der Zeitschrift "Physik in unserer Zeit", möchten mit diesem Buch das Fundament für einen kompetenten und ideologiefreien Austausch zu diesem so wichtigen Thema legen. Für die englischsprachige Ausgabe wurden dem Original einige Beiträge hinzugefügt, die solche mit einem Fokus auf Deutschland und Europa ersetzen.
This book provides an overview of contemporary trends and challenges in maritime energy management (MEM). Coordinated action is necessary to achieve a low carbon and energy-efficient maritime future, and MEM is the prevailing framework aimed at reducing greenhouse gas emissions resulting from maritime industry activities. The book familiarizes readers with the status quo in the field, and paves the way for finding solutions to perceived challenges. The 34 contributions cover six important aspects: regulatory framework; energy-efficient ship design; energy efficient ship and port operation; economic and social dimensions; alternative fuels and wind-assisted ship propulsion; and marine renewable energy. This pioneering work is intended for researchers and academics as well as practitioners and policymakers involved in this important field.
This book addresses the main challenges faced today in implementing the Nearly Zero Energy Buildings (nZEB) concept. The book starts with a chapter that addresses problems related to the energy demand and renewable energy sources available in the built environment, along with the restrictions and opportunities in developing sustainable, efficient and affordable solutions, also gaining aesthetic and architectural acceptance. Advanced solutions to cover the energy needs by using various renewable-based energy mixes are presented in two chapters. These two chapters discuss the problem of conversion efficiency at the level of components and systems, aiming at giving value to the variable renewable energy sources, in producing thermal and electric energy. The concept is discussed further in a chapter on advanced solutions for water re-use and recycling wastes as second raw materials. The need for new strategies and implementation tools, for education and training is addressed in the final chapter as part of the nZEB concept, towards sustainable communities. The sub-chapters of the book were openly presented during the 4th Edition of the Conference for Sustainable Energy, held 6-8 November, 2014 and organized by the R&D Centre Renewable Energy Systems and Recycling at the Transilvania University of Brasov, Romania. This event was developed under the patronage of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM), through the Technical Committee Sustainable Energy Systems.