Download Free Sustainable Design For Renewable Processes Book in PDF and EPUB Free Download. You can read online Sustainable Design For Renewable Processes and write the review.

Covers the basic technologies to collect and process renewable resources and rwa materials into products. A systems engineering perspective is used, and the principles are applied through a variety of examples and case studies.
Sustainable Design for Renewable Processes: Principles and Case Studies covers the basic technologies to collect and process renewable resources and raw materials and transform them into useful products. Starting with basic principles on process analysis, integration and optimization that also addresses challenges, the book then discusses applied principles using a number of examples and case studies that cover biomass, waste, solar, water and wind as resources, along with a set of technologies including gasification, pyrolysis, hydrolysis, digestion, fermentation, solar thermal, solar photovoltaics, electrolysis, energy storage, etc. The book includes examples, exercises and models using Python, Julia, MATLAB, GAMS, EXCEL, CHEMCAD or ASPEN. This book shows students the challenges posed by renewable-based processes by presenting fundamentals, case studies and step-by-step analyses of renewable resources. Hence, this is an ideal and comprehensive reference for Masters and PhD students, engineers and designers. - Addresses the fundamentals and applications of renewable energy process design for all major resources, including biomass, solar, wind, geothermal, waste and water - Provides detailed case studies, step-by-step instructions, and guidance for each renewable energy technology - Presents models and simulations for a wide variety of platforms, including state-of-the-art and open access platforms in addition to well-known commercial software
Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production. The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently. - Emphasis on reactor engineering in sustainable energy technology - Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics - Expert accounts of reactor types, processing, and optimization - Figures and tables designed to comprehensively present concepts and proceduresHundreds of citations drawing on many most recent and previously published works on the subject
Presents comprehensive coverage of process intensification and integration for sustainable design, along with fundamental techniques and experiences from the industry Drawing from fundamental techniques and recent industrial experiences, this book discusses the many developments in process intensification and integration and focuses on increasing sustainability via several overarching topics such as Sustainable Manufacturing, Energy Saving Technologies, and Resource Conservation and Pollution Prevention Techniques. Process Intensification and Integration for Sustainable Design starts discussions on: shale gas as an option for the production of chemicals and challenges for process intensification; the design and techno-economic analysis of separation units to handle feedstock variability in shale gas treatment; RO-PRO desalination; and techno-economic and environmental assessment of ultrathin polysulfone membranes for oxygen-enriched combustion. Next, it looks at process intensification of membrane-based systems for water, energy, and environment applications; the design of internally heat-integrated distillation column (HIDiC); and graphical analysis and integration of heat exchanger networks with heat pumps. Decomposition and implementation of large-scale interplant heat integration is covered, as is the synthesis of combined heat and mass exchange networks (CHAMENs) with renewables. The book also covers optimization strategies for integrating and intensifying housing complexes; a sustainable biomass conversion process assessment; and more. Covers the many advances and changes in process intensification and integration Provides side-by-side discussions of fundamental techniques and recent industrial experiences to guide practitioners in their own processes Presents comprehensive coverage of topics relevant, among others, to the process industry, biorefineries, and plant energy management Offers insightful analysis and integration of reactor and heat exchanger network Looks at optimization of integrated water and multi-regenerator membrane systems involving multi-contaminants Process Intensification and Integration for Sustainable Design is an ideal book for process engineers, chemical engineers, engineering scientists, engineering consultants, and chemists.
Sustainable Design through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement, Second Edition, is an important textbook that provides authoritative, comprehensive, and easy-to-follow coverage of the fundamental concepts and practical techniques on the use of process integration to maximize the efficiency and sustainability of industrial processes. The book is ideal for adoption in process design and sustainability courses. It is also a valuable guidebook to process, chemical, and environmental engineers who need to improve the design, operation, performance, and sustainability of industrial plants. The book covers pressing and high growth topics, including benchmarking process performance, identifying root causes of problems and opportunities for improvement, designing integrated solutions, enhancing profitability, conserving natural resources, and preventing pollution. Written by one of the world's foremost authorities on integrated process design and sustainability, the new edition contains new chapters and updated materials on various aspects of process integration and sustainable design. The new edition is also packed with numerous new examples and industrial applications. - Allows the reader to methodically develop rigorous targets that benchmark the performance of industrial processes then develop cost-effective implementations - Contains state-of-the-art process integration and improvement approaches and techniques including graphical, algebraic, and mathematical methods - Covers topics and applications that include profitability enhancement, mass and energy conservation, synthesis of innovative processes, retrofitting of existing systems, design and assessment of water, energy, and water-energy-nexus systems, and reconciliation of various sustainability objectives
This book is a compilation of the various recently developed techniques emphasizing better chemical processes and products, with state-of-the-art contributions by world-renowned leaders in process design and optimization. It covers various areas such as grass-roots design, retrofitting, continuous and batch processing, energy efficiency, separations, and pollution prevention, striking a balance between fundamental techniques and applications. The book also contains industrial applications and will serve as a good compilation of recent industrial experience for which the process design and optimization techniques were applied to enhance sustainability. Academic researchers and industrial practitioners will find this book useful as a review of systematic approaches and best practices in sustainable design and optimization of industrial processes. The book is accompanied by some electronic supplements (i.e., models and programs) for selected chapters.
Design and Performance Optimization of Renewable Energy Systems provides an integrated discussion of issues relating to renewable energy performance design and optimization using advanced thermodynamic analysis with modern methods to configure major renewable energy plant configurations (solar, geothermal, wind, hydro, PV). Vectors of performance enhancement reviewed include thermodynamics, heat transfer, exergoeconomics and neural network techniques. Source technologies studied range across geothermal power plants, hydroelectric power, solar power towers, linear concentrating PV, parabolic trough solar collectors, grid-tied hybrid solar PV/Fuel cell for freshwater production, and wind energy systems. Finally, nanofluids in renewable energy systems are reviewed and discussed from the heat transfer enhancement perspective. - Reviews the fundamentals of thermodynamics and heat transfer concepts to help engineers overcome design challenges for performance maximization - Explores advanced design and operating principles for solar, geothermal and wind energy systems with diagrams and examples - Combines detailed mathematical modeling with relevant computational analyses, focusing on novel techniques such as artificial neural network analyses - Demonstrates how to maximize overall system performance by achieving synergies in equipment and component efficiency
Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices Focuses on designing of materials through green-processing concepts Highlights challenges and opportunities in green processing of renewable materials for energy devices
Pixels use electricity, and a lot of it. If the Internet were a country, it would be the sixth largest in terms of electricity use. That’s because today’s average web page has surpassed two megabytes in size, leading to slow load times, frustrated users, and a lot of wasted energy. With this practical guide, your web design team will learn how to apply sustainability principles for creating speedy, user-friendly, and energy-efficient digital products and services. Author Tim Frick introduces a web design framework that focuses on four key areas where these principles can make a difference: content strategy, performance optimization, design and user experience, and green hosting. You’ll discover how to provide users with a streamlined experience, while reducing the environmental impact of your products and services. Learn why 90% of the data that ever existed was created in the last year Use sustainability principles to innovate, reduce waste, and function more efficiently Explore green hosting, sustainable business practices, and lean/agile workflows Put the right things in front of users at precisely the moment they need them—and nothing more Increase site search engine visibility, streamline user experience, and make streaming video more efficient Use Action Items to explore concepts outlined in each chapter
Sustainable Design and Build provides a complete reference for engineers and scientists who want to conduct sustainability research. The book begins with a rudimentary discussion of environmental pollution and energy that is followed by their applications for solving problems in construction processes and practices governing advanced building design, infrastructure and transportation, and water and sewage. Other topics include engineering invisible roads and bridges, smart building technology, building information modeling, energy modeling, resilience in urban and rural development, engineering invisible roads and bridges, zero emission vehicles and flying transportation technology. This book presents a valuable guide to sustainable design and construction processes and methods.