Download Free Surface And Interfacial Science Book in PDF and EPUB Free Download. You can read online Surface And Interfacial Science and write the review.

This book highlights the changes occurring at surfaces and interfaces involving two or multi-phase system due to the interaction between surface atoms/molecules and those added either intentionally or inadvertently in form of gases (vapours) solvents (aqueous and nonaqueous) and solutions mostly of surface active agents. A clear picture of the mechanism involved in industrial processes, namely, lubrication, adhesion, wear, friction, maintenance engineering, surface coating, metallurgical operation in production of iron and steel, corrosion prevention, mineral beneficiation including recovery of fine coal from slurries from coal washeries, tertiary oil recovery etc. are provided.
A general introduction to surface and interfacial forces, perfectly combining theoretical concepts, experimental techniques and practical applications. In this completely updated edition all the chapters have been thoroughly revised and extended to cover new developments and approaches with around 15% new content. A large part of the book is devoted to surface forces between solid surfaces in liquid media, and while a basic knowledge of colloid and interface science is helpful, it is not essential since all important concepts are explained and the theoretical concepts can be understood with an intermediate knowledge of mathematics. A number of exercises with solutions and the end-of-chapter summaries of the most important equations, facts and phenomena serve as additional tools to strengthen the acquired knowledge and allow for self-study. The result is a readily accessible text that helps to foster an understanding of the intricacies of this highly relevant topic.
This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.
This book presents a number of selected papers given at the LB9 conference, held in Potsdam, Germany, in August 2000. It is dedicated to new techniques and methodologies for studying interfacial layers. One group of manuscripts deals with the application of surface plasmons at solid interfaces, used for example in resonance spectroscopy and light scattering. New applications of various types of Atomic Force Microscopy are reported making use of various modifications of tips. A number of chapters are dedicated to light emitting diodes built with the help of LB layers. The aim of these studies is the improvement of efficiency. Electrochemical methods were described as tools for developing sensors, in particular miniaturised pH or gas sensors.The application of synchrotron X-ray and NMR techniques have been described in detail in two extended chapters. It is demonstrated how molecular information can be detected by these methods for various types of interfacial layers.This monograph, along with 130 papers that have been submitted for publication in the special issues of relevant journals, represent the proceedings of the LBP conference.
This edited volume offers complete coverage of the latest theoretical, experimental, and computer-based data as summarized by leading international researchers. It promotes full understanding of the physical phenomena and mechanisms at work in surface and interfacial tensions and gradients, their direct impact on interface shape and movement, and their significance to numerous applications. Assessing methods for the accurate measurement of surface tension, interfacial tension, and contact angles, Surface and Interfacial Tension presents modern simulations of complex interfacial motions, such as bubble motion in liquids, and authoritatively illuminates bubble nucleation and detachment.
Interfacial Separation of Particles is concerned with the processing and separation of fine solid particles in liquid solutions using interfacial technology.Interfacial separation has been finding wide application in many industrial fields, such as pigment and filler production, mineral processing, environmental protection, hydrometallurgy, bioengineering, food and beverage industry and chemical industry. This book describes all interfacial separation techniques and discusses the general and specific fundamentals of the techniques. The book intends to promote theoretical understanding and the more promising developments of interfacial separation technology whilst broadening the reader's background knowledge of industrial suspensions.* Is clearly written based on strong systematic science fundamentals* Provides comprehensive coverage on particle technology, mineral processing and water treatment* Includes practical examples from the different industrial fields
Interfacial Science: An Introduction is an accessible text introducing readers to the chemistry of interfaces, a subject of increasing relevance and popularity due to the emergence of nanoscience.
Colloid and Interface Science in Pharmaceutical Research and Development describes the role of colloid and surface chemistry in the pharmaceutical sciences. It gives a detailed account of colloid theory, and explains physicochemical properties of the colloidal-pharmaceutical systems, and the methods for their measurement. The book starts with fundamentals in Part I, covering fundamental aspects of colloid and interface sciences as applied to pharmaceutical sciences and thus should be suitable for teaching. Parts II and III treat applications and measurements, and they explains the application of these properties and their influence and use for the development of new drugs. - Provides a clear description of the fundamentals of colloid and interface science relevant to drug research and development - Explains the physicochemical/colloidal basis of pharmaceutical science - Lists modern experimental characterization techniques, provides analytical equations and explanations on analyzing the experimental data - Describes the most advanced techniques, AFM (Atomic Force Microscopy), SFA (Surface Force Apparatus) in detail
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
Human biological liquids contain numerous low- and high-molecular weight surfactants. The human organism contains interfaces with enormous surfaces. The physicochemical and biochemical processes taking place at these interfaces are extremely important for the vital functions of the organism as a whole, and the interfacial properties may reflect peculiarities of age and sex, health and disease. The present book is the first attempt to systematically present the results of dynamic and equilibrium surface tensions measurements of serum and urine samples that were obtained from healthy humans of various sex and age, and to compare these results with measurements of biological liquids obtained from patients suffering from various diseases or with measurements of amniotic fluid obtained from women at various stages of pregnancy.Pulmonary medicine, especially neonatology, has systematically used interfacial tensiometry for studying pulmonary surfactant. In this particular area, significant progress was achieved in the treatment of diseases related to alterations of the lung surfactant system. We believe that, similar to the progress in pulmonary medicine attributed to surface chemical studies of lung surfactant, progress in other medical branches could be expected through studies of interfacial characteristics of other human biological liquids.For several years the authors of this book have been engaged in studies aimed at the improvement of the maximum bubble pressure method, resulting in the development of computer controlled tensiometers which are capable of measuring dynamic surface tensions within a wide range of surface lifetime. In addition to the measurement techniques, a correct interpretation and analysis of the tensiometric data obtained is extremely important. The kinetic theory of adsorption from solutions, and the theory of equilibrium adsorption layers of surfactant/protein mixtures provide the basis for both the choice of the most characteristic parameters of tensiograms and the analysis of the results. Some theoretical models describing the adsorption of proteins are presented in Chapter 1. The main theoretical and experimental issues related to the maximum bubble pressure technique as applied to biological liquids are presented in Chapter 2. A more detailed discussion of the differences of the various methods in use for measuring dynamic surface tension of biological fluids is provided in Chapter 3. Chapter 4 gives data from patients with kidney disease, Chapter 5 from patients with rheumatic diseases, Chapter 6 with pulmonary diseases, Chapter 7 with diseases of the central nervous system, and Chapter 8 with neoplasms.Dynamic interface tensiometry of human biological liquids is a fascinating new method which deserves a broad use for prospective studies of various diseases.