Download Free Supernovae Neutron Star Physics And Nucleosynthesis Book in PDF and EPUB Free Download. You can read online Supernovae Neutron Star Physics And Nucleosynthesis and write the review.

This book deals with the interdisciplinary areas of nuclear physics, supernovae and neutron star physics. It addresses the physics and astrophysics of the spectacular supernova explosions, starting with the collapse of massive stars and ending with the birth of neutron stars or black holes. Recent progress in the understanding of core collapse supernova (CCSN) and observational aspects of future detections of neutrinos from CCSN explosions are discussed. The other main focus in this text is the novel phases of dense nuclear matter, its compositions and equation of state (EoS) from low to very high baryon density relevant to supernovae and neutron stars. The multi-messenger astrophysics of binary neutron star merger GW170817 and its relation to EoS through tidal deformability are also presented in detail. The synthesis of elements heavier than iron in the supernova and neutron star environment by the rapid (r)-process are treated here with special emphasis on the nucleosynthesis in the ejected material from GW170817. This monograph is written for graduate students and researchers in the field of nuclear astrophysics.
This book investigates the question of how matter has evolved since its origin in the Big Bang, from the cosmological synthesis of hydrogen and helium to the generation of the complex set of nuclei that comprise our world and our selves. A central theme is the evolution of gravitationally contained thermonuclear reactors, otherwise known as stars. Our current understanding is presented systematically and quantitatively, by combining simple analytic models with new state-of-the-art computer simulations. The narrative begins with the clues (primarily the solar system abundance pattern), the constraining physics (primarily nuclear and particle physics), and the thermonuclear burning in the Big Bang itself. It continues with a step-by-step description of how stars evolve by nuclear reactions, a critical investigation of supernova explosion mechanisms and the formation of neutron stars and of black holes, and an analysis of how such explosions appear to astronomers (illustrated by comparison with recent observations). It concludes with a synthesis of these ideas for galactic evolution, with implications for nucleosynthesis in the first generation of stars and for the solar system abundance pattern. Emphasis is given to questions that remain open, and to active research areas that bridge the disciplines of astronomy, cosmochemistry, physics, and planetary and space science. Extensive references are given.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
Physics of Neutron Stars
This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 “Exploring fundamental physics with compact stars” (NewCompStar).
Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.
Written by experts from geophysics, astrophysics and engineering, this unique book on the interdisciplinary aspects of turbulence offers recent advances in the field and covers everything from the very nature of turbulence to some practical applications.
Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpretations of such data, and an overview of the evolution of stars that brings them to an explosive endpoint. Part 2 goes into more detail on core-collapse and superluminous events: which kinds of stars produce them, and how do they do it? Part 3 is concerned with the stellar progenitors and explosion mechanisms of thermonuclear (Type Ia) supernovae. Part 4 is about consequences of supernovae and some applications to astrophysics and cosmology. References are provided in sufficient number to help the reader enter the literature.
Nuclear astrophysics background -- The instruments used to study astrophysics -- Nuclear basics of nuclear astrophysics -- Stellar basics of nuclear astrophysics -- Hydrogen burning -- Advanced stellar evolution, supernovae, and gamma-ray bursters -- Production of the abundant heavy nuclides -- Nucleosynthesis on the proton-rich side of stability, X-ray bursts, and magnetars -- The beginning of the universe.
Most elements are synthesized, or "cooked", by thermonuclear reactions in stars. The newly formed elements are released into the interstellar medium during a star's lifetime, and are subsequently incorporated into a new generation of stars, into the planets that form around the stars, and into the life forms that originate on the planets. Moreover, the energy we depend on for life originates from nuclear reactions that occur at the center of the Sun. Synthesis of the elements and nuclear energy production in stars are the topics of nuclear astrophysics, which is the subject of this book. It presents nuclear structure and reactions, thermonuclear reaction rates, experimental nuclear methods, and nucleosynthesis in detail. These topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves both as a textbook for advanced undergraduate and graduate students, with worked examples and end-of-chapter excercises, but also as a reference book for use by researchers working in the field of nuclear astrophysics.