Download Free Supercritical Fluid Extraction Of Nutraceuticals And Bioactive Compounds Book in PDF and EPUB Free Download. You can read online Supercritical Fluid Extraction Of Nutraceuticals And Bioactive Compounds and write the review.

Enhanced concern for the quality and safety of food products, increased preference for natural products, and stricter regulations on the residual level of solvents, all contribute to the growing use of supercritical fluid technology as a primary alternative for the extraction, fractionation, and isolation of active ingredients. As a solvent-free p
Natural Bioactive Compounds: Technological Advancements deals with the latest breakthroughs in the field of screening, characterization and novel applications of natural bioactive compounds from diverse group of organisms ranging from bacteria, viruses, cyanobacteria, algae, fungi, bryophytes, higher plants, sponges, corals and fishes. Written by some of the most reputed scientists in the field, this book introduces the reader to strategies and methods in the search for bioactive natural products. It is an essential read for researchers and students interested in bioactive natural products, their biological and pharmacological properties, their possible use as chemopreventive or chemotherapeutic agents, and other future potential applications. - Explores natural sources of bioactive compounds, including cyanobacteria, bacteria, viruses, fungi and higher plants - Discusses the potential applications of biological products, such as their use in medicine (antibiotics, cancer research, immunology), as food additives, supplements and technological substances - Analyzes the contributions of emerging or developing technologies for the study of bioactive natural compounds (characterization and purification)
A growing awareness of the contributions that functional foods, bioactive compounds, and nutraceuticals make to health is creating a tremendous market for these products. In order for manufacturers to match this demand with stable, high volume production while maintaining defined and reliable composition, they must have ready access to the very lat
The demand for functional foods and neutraceuticals is on the rise, leaving product development companies racing to improve bioactive compound extraction methods - a key component of functional foods and neutraceuticals development. From established processes such as steam distillation to emerging techniques like supercritical fluid technology, Ext
Separation, extraction and concentration are essential processes in the preparation of key food ingredients. They play a vital role in the quality optimization of common foods and beverages and there is also increasing interest in their use for the production of high-value compounds, such as bioactive peptides from milk and whey, and the recovery of co-products from food processing wastes.Part one describes the latest advances in separation, extraction and concentration techniques, including supercritical fluid extraction, process chromatography and membrane technologies. It also reviews emerging techniques of particular interest, such as pervaporation and pressurised liquid extraction. Part two then focuses on advances in separation technologies and their applications in various sectors of the food, beverage and nutraceutical industries. Areas covered include dairy and egg processing, oilseed extraction, and brewing. This section discusses the characteristics of different foods and fluids, how food constituents are affected by separation processes and how separation processes can be designed and operated to optimize end product quality.With its team of experienced international contributors, Separation, extraction and concentration processes in the food, beverage and nutraceutical industries is an important reference source for professionals concerned with the development and optimisation of these processes. - Describes the latest advances in separation, extraction and concentration techniques and their applications in various sectors of the food, beverage and nutraceutical industries - Reviews emerging techniques of particular interest, such as pervaporation and pressurised liquid extraction - Explores the characteristics of different foods and fluids and how food constituents are affected by separation processes
With increasing energy prices and the drive to reduce CO2 emissions, food industries are challenged to find new technologies in order to reduce energy consumption, to meet legal requirements on emissions, product/process safety and control, and for cost reduction and increased quality as well as functionality. Extraction is one of the promising innovation themes that could contribute to sustainable growth in the chemical and food industries. For example, existing extraction technologies have considerable technological and scientific bottlenecks to overcome, such as often requiring up to 50% of investments in a new plant and more than 70% of total process energy used in food, fine chemicals and pharmaceutical industries. These shortcomings have led to the consideration of the use of new "green" techniques in extraction, which typically use less solvent and energy, such as microwave extraction. Extraction under extreme or non-classical conditions is currently a dynamically developing area in applied research and industry. Using microwaves, extraction and distillation can now be completed in minutes instead of hours with high reproducibility, reducing the consumption of solvent, simplifying manipulation and work-up, giving higher purity of the final product, eliminating post-treatment of waste water and consuming only a fraction of the energy normally needed for a conventional extraction method. Several classes of compounds such as essential oils, aromas, anti-oxidants, pigments, colours, fats and oils, carbohydrates, and other bioactive compounds have been extracted efficiently from a variety of matrices (mainly animal tissues, food, and plant materials). The advantages of using microwave energy, which is a non-contact heat source, includes more effective heating, faster energy transfer, reduced thermal gradients, selective heating, reduced equipment size, faster response to process heating control, faster start-up, increased production, and elimination of process steps. This book will present a complete picture of the current knowledge on microwave-assisted extraction (MAE) of bioactive compounds from food and natural products. It will provide the necessary theoretical background and details about extraction by microwaves, including information on the technique, the mechanism, protocols, industrial applications, safety precautions, and environmental impacts.
Natural products are sought after by the food, pharmaceutical and cosmetics industries, and research continues into their potential for new applications. Extraction of natural products in an economic and environmentally-friendly way is of high importance to all industries involved. This book presents a holistic and in-depth view of the techniques available for extracting natural products, with modern and more environmentally-benign methods, such as ultrasound and supercritical fluids discussed alongside conventional methods. Examples and case studies are presented, along with the decision-making process needed to determine the most appropriate method. Where appropriate, scale-up and process integration is discussed. Relevant to researchers in academia and industry, and students aiming for either career path, Natural Product Extraction presents a handy digest of the current trends and latest developments in the field with concepts of Green Chemistry in mind.
This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy. The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach. The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery.
Ingredients Extraction by Physico-chemical Methods, Volume Four, the latest release in the Handbook of Food Bioengineering series, reveals the most investigated extraction methods of ingredients and their impact on the food industry. This resource describes types of ingredients that may be extracted through physico-chemical methods (i.e. specific plants, fruits, spices, etc.), along with their particularities to help readers understand their biological effect and solve research problems. The extraction methods of bioactive compounds and functional ingredients are discussed, along with information on green ingredient extraction strategies to help reduce harmful environmental and health effects. Extraction methods in this book can be applied for multiple purposes within the food industry, such as ingredients separation for food development, the purification and separation of toxic compounds from a food mixture, and the recovery of natural bioactive compounds.
Water Extraction of Bioactive Compounds: From Plants to Drug Development draws together the expert knowledge of researchers from around the world to outline the essential knowledge and techniques required to successfully extract bioactive compounds for further study. The book is a practical tool for medicinal chemists, biochemists, pharmaceutical scientists and academics working in the discovery and development of drugs from natural sources. The discovery and extraction of bioactive plant compounds from natural sources is of growing interest to drug developers, adding greater fuel to a simultaneous search for efficient, green technologies to support this. Particularly promising are aqueous based methods, as water is a cheap, safe and abundant solvent. Water Extraction of Bioactive Compounds: From Plants to Drug Development is a detailed guide to the fundamental concepts and considerations needed to successfully undertake such processes, supported by application examples and highlighting the most influential variables. Beginning with an introduction to plants as sources of drugs, the book highlights the need for a move towards both more rational and greener techniques in the field, and presents multiple innovative water-based strategies for the discovery and extraction of bioactive constituents of botanicals. A broad range of available techniques are reviewed, including conventional and pressurized hot water extraction techniques, intensified processes such as microwave-assisted, ultrasound-assisted processes, and enzyme assisted extraction, and processes using combined techniques. - Covers the theoretical background and range of techniques available to researchers, helping them to select the most appropriate extraction method for their needs - Presents up-to-date and cutting edge applications by international experts - Highlights current use and future potential for industrial scale applications - Offers a thorough introduction to plants as sources of drugs, highlighting strategies for the discovery of novel bioactive constituents of botanicals