Download Free Studying Cyanobacteria By Means Of Fluorescence Methods Book in PDF and EPUB Free Download. You can read online Studying Cyanobacteria By Means Of Fluorescence Methods and write the review.

Measurements of variable chlorophyll fluorescence have revolutionised global research of photosynthetic bacteria, algae and plants and in turn assessment of the status of aquatic ecosystems, a success that has partly been facilitated by the widespread commercialisation of a suite of chlorophyll fluorometers designed for almost every application in lakes, rivers and oceans. Numerous publications have been produced as researchers and assessors have simultaneously sought to optimise protocols and practices for key organisms or water bodies; however, such parallel efforts have led to difficulties in reconciling processes and patterns across the aquatic sciences. This book follows on from the first international conference on “chlorophyll fluorescence in the aquatic sciences” (AQUAFLUO 2007): to bridge the gaps between the concept, measurement and application of chlorophyll fluorescence through the synthesis and integration of current knowledge from leading researchers and assessors as well as instrument manufacturers.
Chlorophyll a Fluorescence: A Signature of Photosynthesis highlights chlorophyll (Chl) a fluorescence as a convenient, non-invasive, highly sensitive, rapid and quantitative probe of oxygenic photosynthesis. Thirty-one chapters, authored by 58 international experts, provide a solid foundation of the basic theory, as well as of the application of the rich information contained in the Chl a fluorescence signal as it relates to photosynthesis and plant productivity. Although the primary photochemical reactions of photosynthesis are highly efficient, a small fraction of absorbed photons escapes as Chl fluorescence, and this fraction varies with metabolic state, providing a basis for monitoring quantitatively various processes of photosynthesis. The book explains the mechanisms with which plants defend themselves against environmental stresses (excessive light, extreme temperatures, drought, hyper-osmolarity, heavy metals and UV). It also includes discussion on fluorescence imaging of leaves and cells and the remote sensing of Chl fluorescence from terrestrial, airborne, and satellite bases. The book is intended for use by graduate students, beginning researchers and advanced undergraduates in the areas of integrative plant biology, cellular and molecular biology, plant biology, biochemistry, biophysics, plant physiology, global ecology and agriculture.
Cyanobacteria constitute the most widely distributed group of photosynthetic prokaryotes found in almost all realms of the earth and play an important role in Earth's nitrogen and carbon cycle. The gradual transformation from reducing atmosphere to oxidizing atmosphere was a turning point in the evolutionary history of the earth and made conditions for present life forms possible. Cyanobacteria: From Basic Science to Applications is the first reference volume that comprehensively discusses all aspects of cyanobacteria, including the diverse mechanisms of cyanobacteria for the advancement of cyanobacterial abilities, towards higher biofuel productivity, enhanced tolerance to environmental stress and bioactive compounds and potential for biofertilizers. - Describes cyanobacterial diversity, stress biology, and biotechnological aspects of cyanobacteria - Explores the global importance of cyanobacteria - Provides a broad compilation of research that deals with cyanobacterial stress responses in both controlled laboratory conditions as well as in their natural environment
Fluorescence methods play a leading role in the investigation of biological objects. They are the only non-destructive methods for investigating living cells and microorganisms in vivo. Using intrinsic and artificial fluorescence methods provides deep insight into mechanisms underlying physiological and biochemical processes. This book covers a wide range of modern methods involved in experimental biology. It illustrates the use of fluorescence microscopy and spectroscopy, confocal laser scanning microscopy, flow cytometry, delayed fluorescence, pulse-amplitude-modulation fluorometry, and fluorescent dye staining protocols. This book provides an overview of practical and theoretical aspects of fluorescence methods and their successful application in the investigation of static and dynamic processes in living cells and microorganisms.
This volume comprises select papers presented at a symposium held in September, 1996 in India. The contributors used the forum to disseminate their research findings.
This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field’s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.
A valuable handbook containing reviews, practical methods and standard operating procedures. A valuable and practical working handbook containing introductory and specialist content that tackles a major and growing field of environmental, microbiological and ecotoxicological monitoring and analysis Includes introductory reviews, practical analytical chapters and a comprehensive listing of almost thirty Standard Operating Procedures (SOPs) For use in the laboratory, in academic and government institutions and industrial settings Those readers will appreciate the research that validates and updates cyanotoxin monitoring and analysis plus adding to approaches for setting standard methods that can be applied worldwide. Wayne Carmichael, Analytical and Bioanalytical Chemistry (2018).
Advances in Cyanobacterial Biology presents the novel, practical, and theoretical aspects of cyanobacteria, providing a better understanding of basic and advanced biotechnological application in the field of sustainable agriculture. Chapters have been designed to deal with the different aspects of cyanobacteria including their role in the evolution of life, cyanobacterial diversity and classification, isolation, and characterization of cyanobacteria through biochemical and molecular approaches, phylogeny and biogeography of cyanobacteria, symbiosis, Cyanobacterial photosynthesis, morphological and physiological adaptation to abiotic stresses, stress-tolerant cyanobacterium, biological nitrogen fixation. Other topics include circadian rhythms, genetics and molecular biology of abiotic stress responses, application of cyanobacteria and cyanobacterial mats in wastewater treatments, use as a source of novel stress-responsive genes for development of stress tolerance and as a source of biofuels, industrial application, as biofertilizer, cyanobacterial blooms, use in Nano-technology and nanomedicines as well as potential applications. This book will be important for academics and researchers working in cyanobacteria, cyanobacterial environmental biology, cyanobacterial agriculture and cyanobacterial molecular biologists.
Harnessing the sun’s energy via photosynthesis is at the core of sustainable production of food, fuel, and materials by plants, algae, and cyanobacteria. Photosynthesis depends on photoprotection against intense sunlight, starting with the safe removal of excess excitation energy from the light-harvesting system, which can be quickly and non-destructively assessed via non-photochemical quenching of chlorophyll fluorescence (NPQ). By placing NPQ into the context of whole-organism function, this book aims to contribute towards identification of plant and algal lines with superior stress resistance and productivity. By addressing agreements and open questions concerning photoprotection’s molecular mechanisms, this book contributes towards development of artificial photosynthetic systems. A comprehensive picture –from single molecules to organisms in ecosystems, and from leading expert’s views to practical information for non-specialists on NPQ measurement and terminology – is presented.
Unites a biological and a biotechnological perspective on cyanobacteria, and includes the industrial aspects and applications of cyanobacteria Cyanobacteria Biotechnology offers a guide to the interesting and useful features of cyanobacteria metabolism that keeps true to a biotechnology vision. In one volume the book brings together both biology and biotechnology to illuminate the core acpects and principles of cyanobacteria metabolism. Designed to offer a practical approach to the metabolic engineering of cyanobacteria, the book contains relevant examples of how this metabolic "module" is currently being engineered and how it could be engineered in the future. The author includes information on the requirements and real-world experiences of the industrial applications of cyanobacteria. This important book: Brings together biology and biotechnology in order to gain insight into the industrial relevant topic of cyanobacteria Introduces the key aspects of the metabolism of cyanobacteria Presents a grounded, practical approach to the metabolic engineering of cyanobacteria Offers an analysis of the requirements and experiences for industrial cyanobacteria Provides a framework for readers to design their own processes Written for biotechnologists, microbiologists, biologists, biochemists, Cyanobacteria Biotechnology provides a systematic and clear volume that brings together the biological and biotechnological perspective on cyanobacteria.