Download Free Studyguide For Modern Data Warehousing Mining And Visualization Core Concepts By George M Marakas Isbn 9780131014596 Book in PDF and EPUB Free Download. You can read online Studyguide For Modern Data Warehousing Mining And Visualization Core Concepts By George M Marakas Isbn 9780131014596 and write the review.

For undergraduate/graduate-level Data Mining or Data Warehousing courses in Information Systems or Operations Management Departments electives. Taking a multidisciplinary user/manager approach, this text looks at data warehousing technologies necessary to support the business processes of the twenty-first century. Using a balanced professional and conversational approach, it explores the basic concepts of data mining, warehousing, and visualization with an emphasis on both technical and managerial issues and the implication of these modern emerging technologies on those issues. Data mining and visualization exercises using an included fully-enabled, but time-limited version of Megaputer's PolyAnalyst and TextAnalyst data mining and visualization software give students hands-on experience with real-world applications.
Data Warehousing and Data Mining is presented in a question-and-answer format following the examination pattern and covers all key topics in the syllabus. The book is designed to make learning fast and effective and is precise, up-to-date and will help students excel in their examinations. The book is part of the Express Learning is a series of books designed as quick reference guides to important undergraduate courses. The organized and accessible format of these books allows students to learn important concepts in an easy-to-understand, question-and-answer format. These portable learning tools have been designed as one-stop references for students to understand and master the subjects by themselves.
In recent years, the science of managing and analyzing large datasets has emerged as a critical area of research. In the race to answer vital questions and make knowledgeable decisions, impressive amounts of data are now being generated at a rapid pace, increasing the opportunities and challenges associated with the ability to effectively analyze this data.
This book, Data Mining: The Data Mining Guide for Beginners, Including Applications for Business, Data Mining Techniques, Concepts, and More, will help you understand the basic concepts in data mining as well as its applications. It will dwell mostly on mining methods required in the processing as well as decision-making.
Intro -- Title page -- Full title -- Copyright -- Dedication -- preface -- Acknowledgement -- Contents -- Chapter_1 -- Chapter _2 -- Chapter_ 3 -- Chapter _4 -- Chapter_5 -- Chapter_6 -- Chapter_ 7 -- Chapter_ 8 -- Chapter 9 -- Model paper -- Glossary -- index1
Data Mining is the process of analyzing large amount of data in search of previously undiscovered business patterns. Data Warehousing is a relational/multidimensional database that is designed for Query and Analysis rather than Transaction Processing. This book provides a systematic introduction to the principles of Data Mining and Data Warehousing. It covers the entire range of data mining algorithms (prediction, classification, and association), data mining products and applications, stages.
This book reviews state-of-the-art methodologies and techniques for analyzing enormous quantities of raw data in high-dimensional data spaces, to extract new information for decision making. The goal of this book is to provide a single introductory source, organized in a systematic way, in which we could direct the readers in analysis of large data sets, through the explanation of basic concepts, models and methodologies developed in recent decades. If you are an instructor or professor and would like to obtain instructor’s materials, please visit http://booksupport.wiley.com If you are an instructor or professor and would like to obtain a solutions manual, please send an email to: [email protected]
Core Concepts in Data Analysis: Summarization, Correlation and Visualization provides in-depth descriptions of those data analysis approaches that either summarize data (principal component analysis and clustering, including hierarchical and network clustering) or correlate different aspects of data (decision trees, linear rules, neuron networks, and Bayes rule). Boris Mirkin takes an unconventional approach and introduces the concept of multivariate data summarization as a counterpart to conventional machine learning prediction schemes, utilizing techniques from statistics, data analysis, data mining, machine learning, computational intelligence, and information retrieval. Innovations following from his in-depth analysis of the models underlying summarization techniques are introduced, and applied to challenging issues such as the number of clusters, mixed scale data standardization, interpretation of the solutions, as well as relations between seemingly unrelated concepts: goodness-of-fit functions for classification trees and data standardization, spectral clustering and additive clustering, correlation and visualization of contingency data. The mathematical detail is encapsulated in the so-called “formulation” parts, whereas most material is delivered through “presentation” parts that explain the methods by applying them to small real-world data sets; concise “computation” parts inform of the algorithmic and coding issues. Four layers of active learning and self-study exercises are provided: worked examples, case studies, projects and questions.