Download Free Study Of High Temperature Superconductors With Angle Resolved Photoemission Spectroscopy Book in PDF and EPUB Free Download. You can read online Study Of High Temperature Superconductors With Angle Resolved Photoemission Spectroscopy and write the review.

This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8 by vacuum, ultra-violet, laser-based, angle-resolved photoemission spectroscopy (ARPES). A new form of electron coupling has been identified in Bi2212, which occurs in the superconducting state. For the first time, the Bogoliubov quasiparticle dispersion with a clear band back-bending has been observed with two peaks in the momentum distribution curve in the superconducting state at a low temperature. Readers will find useful information about the technique of angle-resolved photoemission and the study of high-temperature superconductors using this technique. Dr. Wentao Zhang received his PhD from the Institute of Physics at the Chinese Academy of Sciences.
This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8+δ (Bi2212) and single-layer FeSe film grown on SrTiO3 (STO) substrate by means of angle-resolved photoemission spectroscopy (ARPES). It provides the first electronic evidence for the origin of the anomalous high-temperature superconductivity in single-layer FeSe grown on SrTiO3 substrate. Two coexisted sharp-mode couplings have been identified in superconducting Bi2212. The first ARPES study on single-layer FeSe/STO films has provided key insights into the electronic origin of superconductivity in this system. A phase diagram and electronic indication of high Tc and insulator to superconductor crossover have been established in the single-layer FeSe/STO films. Readers will find essential information on the techniques used and interesting physical phenomena observed by ARPES.
Researchers working at the frontier of high-Tc Superconductors have reviewed the development in this area in the past 20 years. Both experimental and theoretical aspects have been covered. New directions and possible theoretical models were suggested. The contributors of this book are from China Center of Advanced Science and Technology (CCAST); Institute of Physics Chinese Academy of Sciences (CAS); National Lab for Superconductivity, Institute of Physics, CAS; School of Physics, Peking University and Center of Advanced Study Tsinghua University. This volume will be a useful guide to those who are working in the field.
Photoemission spectroscopy is one of the most extensively used methods to study the electronic structure of atoms, molecules, and solids and their surfaces. This volume introduces and surveys the field at highest energy and momentum resolutions allowing for a new range of applications, in particular for studies of high temperature superconductors.
This thesis makes significant advances towards an understanding of superconductivity in the cuprate family of unconventional, high-temperature superconductors. Even though the high-temperature superconductors were discovered over 35 years ago, there is not yet a general consensus on an acceptable theory of superconductivity in these materials. One of the early proposals suggested that collective magnetic excitations of the conduction electrons could lead them to form pairs, which in turn condense to form the superconducting state at a critical temperature Tc. Quantitative calculations of Tc using experimental data were, however, not available to verify the applicability of this magnetic mechanism. In this thesis, the author constructed an angle-resolved photoemission apparatus that could provide sufficiently accurate data of the electronic excitation spectra of samples in the normal state, data which was furthermore unusually devoid of any surface contamination. The author also applied the Bethe-Salpeter method to his uncommonly pristine and precise normal state data, and was able to predict the approximate superconducting transition temperatures of different samples. This rare combination of experiment with sophisticated theoretical calculations leads to the conclusion that antiferromagnetic correlations are a viable candidate for the pairing interaction in the cuprate superconductors.
Studies Of High Temperature Superconductors Volume 29 -- Advances In Research & Applications
This Golden Jubilee volume in the world's foremost series on superconductivity covers wide-ranging topics capturing the current excitement in the field. The broad areas include the advancement of high Tc theory, materials depicting unusual characteristics, materials' processing and defect structures for improved properties, their electromagnetic response, flux pinning, Josephson junctions and devices, and large scale applications.