Download Free Studies Of Grain Boundary Cavitation By Small Angle Neutron Scattering Book in PDF and EPUB Free Download. You can read online Studies Of Grain Boundary Cavitation By Small Angle Neutron Scattering and write the review.

Small-angle neutron scattering has been used to study the process of fatigue-induced grain boundary cavitation in two model materials, pure copper and a Cu-7A1 alloy, fatigued at elevated temperature. Values have been obtained from the scattering data for void volume fraction, and number density of the voids and their size distribution, as a function of fatigue time. The growth rate of individual voids has been calculated and found to be in good agreement with a recent theory of fatigue-induced cavitation. Copper and copper-aluminum show opposite responses to the effect of fatigue temperature on cavitation. An increase in the temperature of fatigue produces an increase in the total void volume growth rate and the void nucleation rate in the case of copper, a decrease in copper-aluminum. The process of grain boundary cavitation is shown to be very sensitive to the movement of the grain boundaries. Grain boundary migration can cause cavitated boundaries to shed their voids into the matrix. The number and size distribution of cavities in a specimen appear to be related to the extent of grain growth which occurs during fatigue.
High-temperature materials is a fast-moving research area with numerous practical applications. Materials that can withstand extremely high temperatures and extreme environments are generating considerable attention worldwide; however, designing materials that have low densities, elevated melting temperatures, oxidation resistance, creep resistance, and intrinsic toughness encompass some of the most challenging problems in materials science. The current search for high-temperature materials is largely based on traditional, trial-and-error experimental methods which are costly and time-consuming. An effective way to accelerate research in this field is to use recent advances in materials simulations and high performance computing and communications (HPCC) to guide experiments. This synergy between experiment and advanced materials modeling will significantly enhance the synthesis of novel high-temperature materials. This volume collects recent work from experimental and computational scientists on high-temperature materials and emphasizes the potential for collaboration. It features state-of-the-art materials modeling and recent experimental developments in high-temperature materials. Topics include fundamental phenomena and properties; measurements and modeling of interfacial phenomena, stresses, growth of defects, strain, and fracture; and electronic structure and molecular dynamics.