Download Free Structures On Sets Of Monomial Ideals Book in PDF and EPUB Free Download. You can read online Structures On Sets Of Monomial Ideals and write the review.

This textbook on combinatorial commutative algebra focuses on properties of monomial ideals in polynomial rings and their connections with other areas of mathematics such as combinatorics, electrical engineering, topology, geometry, and homological algebra. Aimed toward advanced undergraduate students and graduate students who have taken a basic course in abstract algebra that includes polynomial rings and ideals, this book serves as a core text for a course in combinatorial commutative algebra or as preparation for more advanced courses in the area. The text contains over 600 exercises to provide readers with a hands-on experience working with the material; the exercises include computations of specific examples and proofs of general results. Readers will receive a firsthand introduction to the computer algebra system Macaulay2 with tutorials and exercises for most sections of the text, preparing them for significant computational work in the area. Connections to non-monomial areas of abstract algebra, electrical engineering, combinatorics and other areas of mathematics are provided which give the reader a sense of how these ideas reach into other areas.
Historically, the study of monomial ideals became fashionable after the pioneering work by Richard Stanley in 1975 on the upper bound conjecture for spheres. On the other hand, since the early 1990s, under the strong influence of Gröbner bases, binomial ideals became gradually fashionable in commutative algebra. The last ten years have seen a surge of research work in the study of monomial and binomial ideals. Remarkable developments in, for example, finite free resolutions, syzygies, Hilbert functions, toric rings, as well as cohomological invariants of ordinary powers, and symbolic powers of monomial and binomial ideals, have been brought forward. The theory of monomial and binomial ideals has many benefits from combinatorics and Göbner bases. Simultaneously, monomial and binomial ideals have created new and exciting aspects of combinatorics and Göbner bases. In the present Special Issue, particular attention was paid to monomial and binomial ideals arising from combinatorial objects including finite graphs, simplicial complexes, lattice polytopes, and finite partially ordered sets, because there is a rich and intimate relationship between algebraic properties and invariants of these classes of ideals and the combinatorial structures of their combinatorial counterparts. This volume gives a brief summary of recent achievements in this area of research. It will stimulate further research that encourages breakthroughs in the theory of monomial and binomial ideals. This volume provides graduate students with fundamental materials in this research area. Furthermore, it will help researchers find exciting activities and avenues for further exploration of monomial and binomial ideals. The editors express our thanks to the contributors to the Special Issue. Funds for APC (article processing charge) were partially supported by JSPS (Japan Society for the Promotion of Science) Grants-in-Aid for Scientific Research (S) entitled "The Birth of Modern Trends on Commutative Algebra and Convex Polytopes with Statistical and Computational Strategies" (JP 26220701). The publication of this volume is one of the main activities of the grant.
This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
A very carefully crafted introduction to the theory and some of the applications of Grobner bases ... contains a wealth of illustrative examples and a wide variety of useful exercises, the discussion is everywhere well-motivated, and further developments and important issues are well sign-posted ... has many solid virtues and is an ideal text for beginners in the subject ... certainly an excellent text. --Bulletin of the London Mathematical Society As the primary tool for doing explicit computations in polynomial rings in many variables, Grobner bases are an important component of all computer algebra systems. They are also important in computational commutative algebra and algebraic geometry. This book provides a leisurely and fairly comprehensive introduction to Grobner bases and their applications. Adams and Loustaunau cover the following topics: the theory and construction of Grobner bases for polynomials with coefficients in a field, applications of Grobner bases to computational problems involving rings of polynomials in many variables, a method for computing syzygy modules and Grobner bases in modules, and the theory of Grobner bases for polynomials with coefficients in rings. With over 120 worked-out examples and 200 exercises, this book is aimed at advanced undergraduate and graduate students. It would be suitable as a supplement to a course in commutative algebra or as a textbook for a course in computer algebra or computational commutative algebra. This book would also be appropriate for students of computer science and engineering who have some acquaintance with modern algebra.
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Historically, the study of monomial ideals became fashionable after the pioneering work by Richard Stanley in 1975 on the upper bound conjecture for spheres. On the other hand, since the early 1990s, under the strong influence of Gröbner bases, binomial ideals became gradually fashionable in commutative algebra. The last ten years have seen a surge of research work in the study of monomial and binomial ideals. Remarkable developments in, for example, finite free resolutions, syzygies, Hilbert functions, toric rings, as well as cohomological invariants of ordinary powers, and symbolic powers of monomial and binomial ideals, have been brought forward. The theory of monomial and binomial ideals has many benefits from combinatorics and Göbner bases. Simultaneously, monomial and binomial ideals have created new and exciting aspects of combinatorics and Göbner bases. In the present Special Issue, particular attention was paid to monomial and binomial ideals arising from combinatorial objects including finite graphs, simplicial complexes, lattice polytopes, and finite partially ordered sets, because there is a rich and intimate relationship between algebraic properties and invariants of these classes of ideals and the combinatorial structures of their combinatorial counterparts. This volume gives a brief summary of recent achievements in this area of research. It will stimulate further research that encourages breakthroughs in the theory of monomial and binomial ideals. This volume provides graduate students with fundamental materials in this research area. Furthermore, it will help researchers find exciting activities and avenues for further exploration of monomial and binomial ideals. The editors express our thanks to the contributors to the Special Issue. Funds for APC (article processing charge) were partially supported by JSPS (Japan Society for the Promotion of Science) Grants-in-Aid for Scientific Research (S) entitled ""The Birth of Modern Trends on Commutative Algebra and Convex Polytopes with Statistical and Computational Strategies"" (JP 26220701). The publication of this volume is one of the main activities of the grant.
This textbook provides an introduction to the combinatorial and statistical aspects of commutative algebra with an emphasis on binomial ideals. In addition to thorough coverage of the basic concepts and theory, it explores current trends, results, and applications of binomial ideals to other areas of mathematics. The book begins with a brief, self-contained overview of the modern theory of Gröbner bases and the necessary algebraic and homological concepts from commutative algebra. Binomials and binomial ideals are then considered in detail, along with a short introduction to convex polytopes. Chapters in the remainder of the text can be read independently and explore specific aspects of the theory of binomial ideals, including edge rings and edge polytopes, join-meet ideals of finite lattices, binomial edge ideals, ideals generated by 2-minors, and binomial ideals arising from statistics. Each chapter concludes with a set of exercises and a list of related topics and results that will complement and offer a better understanding of the material presented. Binomial Ideals is suitable for graduate students in courses on commutative algebra, algebraic combinatorics, and statistics. Additionally, researchers interested in any of these areas but familiar with only the basic facts of commutative algebra will find it to be a valuable resource.