Download Free Structures Of Domination In Graphs Book in PDF and EPUB Free Download. You can read online Structures Of Domination In Graphs and write the review.

This volume comprises 17 contributions that present advanced topics in graph domination, featuring open problems, modern techniques, and recent results. The book is divided into 3 parts. The first part focuses on several domination-related concepts: broadcast domination, alliances, domatic numbers, dominator colorings, irredundance in graphs, private neighbor concepts, game domination, varieties of Roman domination and spectral graph theory. The second part covers domination in hypergraphs, chessboards, and digraphs and tournaments. The third part focuses on the development of algorithms and complexity of signed, minus and majority domination, power domination, and alliances in graphs. The third part also includes a chapter on self-stabilizing algorithms. Of extra benefit to the reader, the first chapter includes a glossary of commonly used terms. The book is intended to provide a reference for established researchers in the fields of domination and graph theory and graduate students who wish to gain knowledge of the topics covered as well as an overview of the major accomplishments and proof techniques used in the field.
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems.
This monograph is designed to be an in-depth introduction to domination in graphs. It focuses on three core concepts: domination, total domination, and independent domination. It contains major results on these foundational domination numbers, including a wide variety of in-depth proofs of selected results providing the reader with a toolbox of proof techniques used in domination theory. Additionally, the book is intended as an invaluable reference resource for a variety of readerships, namely, established researchers in the field of domination who want an updated, comprehensive coverage of domination theory; next, researchers in graph theory who wish to become acquainted with newer topics in domination, along with major developments in the field and some of the proof techniques used; and, graduate students with interests in graph theory, who might find the theory and many real-world applications of domination of interest for masters and doctoral thesis topics. The focused coverage also provides a good basis for seminars in domination theory or domination algorithms and complexity. The authors set out to provide the community with an updated and comprehensive treatment on the major topics in domination in graphs. And by Jove, they’ve done it! In recent years, the authors have curated and published two contributed volumes: Topics in Domination in Graphs, © 2020 and Structures of Domination in Graphs, © 2021. This book rounds out the coverage entirely. The reader is assumed to be acquainted with the basic concepts of graph theory and has had some exposure to graph theory at an introductory level. As graph theory terminology sometimes varies, a glossary of terms and notation is provided at the end of the book.
This book provides a timely overview of fuzzy graph theory, laying the foundation for future applications in a broad range of areas. It introduces readers to fundamental theories, such as Craine’s work on fuzzy interval graphs, fuzzy analogs of Marczewski’s theorem, and the Gilmore and Hoffman characterization. It also introduces them to the Fulkerson and Gross characterization and Menger’s theorem, the applications of which will be discussed in a forthcoming book by the same authors. This book also discusses in detail important concepts such as connectivity, distance and saturation in fuzzy graphs. Thanks to the good balance between the basics of fuzzy graph theory and new findings obtained by the authors, the book offers an excellent reference guide for advanced undergraduate and graduate students in mathematics, engineering and computer science, and an inspiring read for all researchers interested in new developments in fuzzy logic and applied mathematics.
This volume comprises 16 contributions that present advanced topics in graph domination, featuring open problems, modern techniques, and recent results. The focus is on primary dominating sets such as paired domination, connected domination, restrained domination, dominating functions, Roman domination, and power domination. Additionally, surveys include known results with a sample of proof techniques for each parameter. Of extra benefit to the reader, the first chapter includes a glossary of commonly used terms; the second chapter provides an overview of models of domination from which the parameters are defined. The book is intended to provide a reference for established researchers in the fields of domination and graph theory and graduate students who wish to gain knowledge of the topics covered as well as an overview of the major accomplishments in the field and proof techniques used.
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
"Provides the first comprehensive treatment of theoretical, algorithmic, and application aspects of domination in graphs-discussing fundamental results and major research accomplishments in an easy-to-understand style. Includes chapters on domination algorithms and NP-completeness as well as frameworks for domination."
The contributions in this volume are divided into three sections: theoretical, new models and algorithmic. The first section focuses on properties of the standard domination number &ggr;(G), the second section is concerned with new variations on the domination theme, and the third is primarily concerned with finding classes of graphs for which the domination number (and several other domination-related parameters) can be computed in polynomial time.
This book constitutes the refereed proceedings of the 15th Annual International Conference on Combinatorial Optimization and Applications, COCOA 2021, which took place in Tianjin, China, during December 17-19, 2021. The 55 papers presented in this volume were carefully reviewed and selected from 122 submissions. They deal with combinatorial optimization and its applications in general, focusing on algorithms design, theoretical and experimental analysis, and applied research of general algorithmic interest.