Download Free Structural Studies Of Protein Nucleic Acid Interaction Book in PDF and EPUB Free Download. You can read online Structural Studies Of Protein Nucleic Acid Interaction and write the review.

This book provides both in-depth background and up-to-date information in this area. The chapters are organized by general themes and principles, written by experts who illustrate topics with current findings. Topics covered include: - the role of ions and hydration in protein-nucleic acid interactions - transcription factors and combinatorial specificity - indirect readout of DNA sequence - single-stranded nucleic acid binding proteins - nucleic acid junctions and proteins, - RNA protein recognition - recognition of DNA damage. It will be a key reference for both advanced students and established scientists wishing to broaden their horizons.
This volume contains a series of essays which describe a range of problems in the field of nucleic-acid interactions, investigated by a variety of techniques. An introductory chapter on DNA-protein interactions in the regulation of gene expression is followed by papers on selected model systems.
MongoDB, a cross-platform NoSQL database, is the fastest-growing new database in the world. MongoDB provides a rich document-oriented structure with dynamic queries that you’ll recognize from RDBMS offerings such as MySQL. In other words, this is a book about a NoSQL database that does not require the SQL crowd to re-learn how the database world works! MongoDB has reached 1.0 and boasts 50,000+ users. The community is strong and vibrant and MongoDB is improving at a fast rate. With scalable and fast databases becoming critical for today’s applications, this book shows you how to install, administer and program MongoDB without pretending SQL never existed.
In this 1993 text, Nobel Prize winner Professor Steitz reviews the wide-ranging research in structural studies of DNA-binding proteins and their complexes with DNA. The author clearly and concisely describes the uses of techniques in molecular genetics, DNA synthesis, protein crystallography and nuclear magnetic response.
This book provides a detailed view of the molecular structures of DNA and RNA and how they are recognised by small molecules and proteins. Extensive source material is provided, including information on relevant web sites and computer programmes. The major methods of structural investigation for nucleic acids: X-ray crystallography, NMR, and molecular modelling are reviewed and their scope and limitations (in the context of nucleic acids) discussed. Also covered are the conformational features of nucleic acid building blocks, including a description of how base-pair morphologies are analysed; the structures of DNA double helices and helical oligonucleotides, emphasising current ideas on sequence-dependent structure; and DNA-DNA interactions, including triplexes and quadruplexes. The principles of RNA folding, ribosome, and ribozyme structure are also surveyed. Both covalent and non-covalent nucleic acid interactions with small molecules are described, with the emphasis on recognition principles and sequence specific gene recognition. The principles of protein - nucleic acid are covered, focussing on regulatory proteins. Nucleic Acid Structure and Recognition will therefore equip readers with a good understanding of all the important aspects of this major field. The Nucleic Acid Database (NDB) crystallographic and NMR structures for the nucleic acid structures described in the book are freely available through the Nucleic Acid Structure and Recognition website.
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical ther modynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the grad uate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases the availability of texts in active research areas should help stimulate the creation of new courses. CHARLES R. CANTOR New York Preface This monograph is based on a review on polynucleotide structures written for a book series in 1976.
This book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.
Life scientists believe that life is driven, directed, and shaped by biomolecules working on their own or in concert. It is only in the last few decades that technological breakthroughs in sensitive fluorescence microscopy and single-molecule manipulation techniques have made it possible to observe and manipulate single biomolecules and measure their individual properties. The methodologies presented in Single Molecule Techniques: Methods and Protocols are being applied more and more to the study of biologically relevant molecules, such as DNA, DNA-binding proteins, and motor proteins, and are becoming commonplace in molecular biophysics, biochemistry, and molecular and cell biology. The aim of Single Molecule Techniques: Methods and Protocols is to provide a broad overview of single-molecule approaches applied to biomolecules on the basis of clear and concise protocols, including a solid introduction to the most widely used single-molecule techniques, such as optical tweezers, single-molecule fluorescence tools, atomic force microscopy, magnetic tweezers, and tethered particle motion. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Single Molecule Techniques: Methods and Protocols serves as an ideal guide to scientists of all backgrounds and provides a broad and thorough overview of the exciting and still-emerging field of single-molecule biology.
Learn vital information about drug-DNA interactions from Drug-DNA Interactions: Structures and Spectra, the only comprehensive book written about this topic. Understand the types of structural and bonding information that can be obtained using specific physico-chemical methods and discover how to design new drugs that are more effective than current treatments and have fewer side effects. Find detailed information about X-ray crystallography, NMR spectroscopy, molecular modeling, and optical spectroscopy such as UV-Visible absorption, fluorescence, circular dichroism (CD), flow linear dichroism (FLD), infrared (IR) and Raman spectroscopy.