Download Free Stochastic Simulation Modeling Of Gene Gene Interactions Using Gene Expression Data Book in PDF and EPUB Free Download. You can read online Stochastic Simulation Modeling Of Gene Gene Interactions Using Gene Expression Data and write the review.

This book serves as an introduction to the myriad computational approaches to gene regulatory modeling and analysis, and is written specifically with experimental biologists in mind. Mathematical jargon is avoided and explanations are given in intuitive terms. In cases where equations are unavoidable, they are derived from first principles or, at the very least, an intuitive description is provided. Extensive examples and a large number of model descriptions are provided for use in both classroom exercises as well as self-guided exploration and learning. As such, the book is ideal for self-learning and also as the basis of a semester-long course for undergraduate and graduate students in molecular biology, bioengineering, genome sciences, or systems biology./a
To effectively understand and treat complex diseases such as cancer, mathematical and statistical modeling is essential if one wants to represent and characterize the interactions among the different regulatory components that govern the underlying decision making process. Like in any other complex decision making networks, the regulatory power is not evenly distributed among its individual members, but rather concentrated in a few high power "commanders". In biology, such commanders are usually called masters or canalizing genes. Characterizing and detecting such genes are thus highly valuable for the treatment of cancer. Chapter II is devoted to this task, where we present a Bayesian framework to model pathway interactions and then study the behavior of master genes and canalizing genes. We also propose a hypothesis testing procedure to detect a "cut" in pathways, which is useful for discerning drugs' therapeutic effect. In Chapter III, we shift our focus to the understanding of the mechanisms of action (MOA) of cancer drugs. For a new drug, the correct understanding of its MOA is a key step for its application to cancer treatments. Using the Green Fluorescent Protein technology, researchers have been able to track various reporter genes from the same cell population for an extended period of time. Such dynamic gene expression data forms the basis for drug similarity comparisons. In Chapter III, we design an algorithm that can identify mechanistic similarities in drug responses, which leads to the characterization of their respective MOAs. Finally, in the course of drug MOA study, we observe that cells in a hypothetical homogeneous population do not respond to drug treatments in a uniform and synchronous way. Instead, each cell makes a large shift in its gene expression level independently and asynchronously from the others. Hence, to systematically study such behavior, we propose a mathematical model that describes the gene expression dynamics for a population of cells after drug treatments. The application of this model to dose response data provides us new insights of the dosing effects. Furthermore, the model is capable of generating useful hypotheses for future experimental design.
This chapter describes the computational methods for estimating, modeling, and simulating biological systems. It also presents two approaches to understand biological systems and describes a method and a software tool developed by our research group. Bayesian network is a mathematical model for representing causal relationships among random variables by using conditional probabilities. The conditional probabilities describe the parent-child relationships and can be viewed as an extension of the deterministic models like Boolean networks. This model is suited for modeling qualitative relations between genes and allows mathematical and algorithmic analyses. We also devised a method to infer a gene network in terms of a linear system of differential equations from time-course gene expression data. A software tool is developed based on Petri net to modeling and simulation of gene networks. With this software tool, various models have been constructed and its utility has been demonstrated in practice.
Over the past few years, it has been increasingly recognized that stochastic mechanisms play a key role in the dynamics of biological systems. Genetic networks are one example where molecular-level fluctuations are of particular importance. Here stochasticity in the expression of gene products can result in genetically identical cells in the same environment displaying significant variation in biochemical or physical attributes. This variation can influence individual and population-level fitness. In this thesis we first explore the background required to obtain analytical solutions and perform simulations of stochastic models of gene expression. Then we develop an algorithm for the stochastic simulation of gene expression and heterogeneous cell population dynamics. The algorithm combines an exact method to simulate molecular-level fluctuations in single cells and a constant-number Monte Carlo approach to simulate the statistical characteristics of growing cell populations. This approach permits biologically realistic and computationally feasible simulations of environment and time-dependent cell population dynamics. The algorithm is benchmarked against steady-state and time-dependent analytical solutions of gene expression models, including scenarios when cell growth, division, and DNA replication are incorporated into the modelling framework. Furthermore, using the algorithm we obtain the steady-state cell size distribution of a large cell population, grown from a small initial cell population undergoing stochastic and asymmetric division, to the size distribution of a small representative sample of this population simulated to steady-state. These comparisons demonstrate that the algorithm provides an accurate and efficient approach to modelling the effects of complex biological features on gene expression dynamics. The algorithm is also employed to simulate expression dynamics within 'bet-hedging' cell populations during their adaption to environmental stress. These simulations indicate that the cell population dynamics algorithm provides a framework suitable for simulating and analyzing realistic models of heterogeneous population dynamics combining molecular-level stochastic reaction kinetics, relevant physiological details, and phenotypic variability and fitness.
Biological and biomedical studies have entered a new era over the past two decades thanks to the wide use of mathematical models and computational approaches. A booming of computational biology, which sheerly was a theoretician’s fantasy twenty years ago, has become a reality. Obsession with computational biology and theoretical approaches is evidenced in articles hailing the arrival of what are va- ously called quantitative biology, bioinformatics, theoretical biology, and systems biology. New technologies and data resources in genetics, such as the International HapMap project, enable large-scale studies, such as genome-wide association st- ies, which could potentially identify most common genetic variants as well as rare variants of the human DNA that may alter individual’s susceptibility to disease and the response to medical treatment. Meanwhile the multi-electrode recording from behaving animals makes it feasible to control the animal mental activity, which could potentially lead to the development of useful brain–machine interfaces. - bracing the sheer volume of genetic, genomic, and other type of data, an essential approach is, ?rst of all, to avoid drowning the true signal in the data. It has been witnessed that theoretical approach to biology has emerged as a powerful and st- ulating research paradigm in biological studies, which in turn leads to a new - search paradigm in mathematics, physics, and computer science and moves forward with the interplays among experimental studies and outcomes, simulation studies, and theoretical investigations.
Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.
This book develops a rational design and systematic approach to construct a gene network with desired behaviors. In order to achieve this goal, the registry of standard biological parts and experimental techniques are introduced at first. Then these biological components are characterized by a standard modeling method and collected in the component
Abstract: "Gene regulation is a central biological process whose disruption can lead to many diseases. This process is largely controlled by a dynamic network of transcription factors interacting with specific genes to control their expression. Time series microarray gene expression experiments have become a widely used technique to study the dynamics of this process. This thesis introduces new computational methods designed to better utilize data from these experiments and to integrate this data with static transcription factor-gene interaction data to analyze and model the dynamics of gene regulation. The first method, STEM (Short Time-series Expression Miner), is a clustering algorithm and software specifically designed for short time series expression experiments, which represent the substantial majority of experiments in this domain. The second method, DREM (Dynamic Regulatory Events Miner), integrates transcription factor-gene interactions with time series expression data to model regulatory networks while taking into account their dynamic nature. The method uses an Input-Output Hidden Markov Model to identify bifurcation points in the time series expression data. While the method can be readily applied to some species, the coverage of experimentally determined transcription factor-gene interactions in most species is limited. To address this we introduce two methods to improve the computational predictions of these interactions. The first of these methods, SEREND (SEmi-supervised REgulatory Network Discoverer), motivated by the species E. coli is a semi-supervised learning method that uses verified transcription factor-gene interactions, DNA sequence binding motifs, and gene expression data to predict new interactions. We also present a method motivated by human genomic data, that combines motif information with a probabilistic prior on transcription factor binding at each location in the organism's genome, which it infers based on a diverse set of genomic properties. We applied these methods to yeast, E. coli, and human cells. Our methods successfully predicted interactions and pathways, many of which have been experimentally validated. Our results indicate that by explicitly addressing the temporal nature of regulatory networks we can obtain accurate models of dynamic interaction networks in the cell."