Download Free Stochastic Orders And Applications Book in PDF and EPUB Free Download. You can read online Stochastic Orders And Applications and write the review.

This reference text presents comprehensive coverage of the various notions of stochastic orderings, their closure properties, and their applications. Some of these orderings are routinely used in many applications in economics, finance, insurance, management science, operations research, statistics, and various other fields. And the value of the other notions of stochastic orderings needs further exploration. This book is an ideal reference for those interested in decision making under uncertainty and interested in the analysis of complex stochastic systems. It is suitable as a text for advanced graduate course on stochastic ordering and applications.
Stochastic orders and inequalities are being used at an accelerated rate in many diverse areas of probability and statistics. This book provides the first unified, systematic, and accessible treatment of stochasticorders, addressing the growing importance of these orders with the presentation of numerous results that illustrate their usefulness and applicability. Ten insightful chapters emphasize the applications by specialists in probability and statistics, economics, operations research, and reliability theory. Applications include multivariate variability, epidemics, comparisons of risk and risk aversion, scheduling, and systems reliability theory.
An Introduction to Stochastic Orders discusses this powerful tool that can be used in comparing probabilistic models in different areas such as reliability, survival analysis, risks, finance, and economics. The book provides a general background on this topic for students and researchers who want to use it as a tool for their research. In addition, users will find detailed proofs of the main results and applications to several probabilistic models of interest in several fields, and discussions of fundamental properties of several stochastic orders, in the univariate and multivariate cases, along with applications to probabilistic models. - Introduces stochastic orders and its notation - Discusses different orders of univariate stochastic orders - Explains multivariate stochastic orders and their convex, likelihood ratio, and dispersive orders
Stochastic Orders in Reliability and Risk Management is composed of 19 contributions on the theory of stochastic orders, stochastic comparison of order statistics, stochastic orders in reliability and risk analysis, and applications. These review/exploratory chapters present recent and current research on stochastic orders reported at the International Workshop on Stochastic Orders in Reliability and Risk Management, or SORR2011, which took place in the City Hotel, Xiamen, China, from June 27 to June 29, 2011. The conference’s talks and invited contributions also represent the celebration of Professor Moshe Shaked, who has made comprehensive, fundamental contributions to the theory of stochastic orders and its applications in reliability, queueing modeling, operations research, economics and risk analysis. This volume is in honor of Professor Moshe Shaked. The work presented in this volume represents active research on stochastic orders and multivariate dependence, and exemplifies close collaborations between scholars working in different fields. The Xiamen Workshop and this volume seek to revive the community workshop tradition on stochastic orders and dependence and strengthen research collaboration, while honoring the work of a distinguished scholar.
Permutation testing for multivariate stochastic ordering and ANOVA designs is a fundamental issue in many scientific fields such as medicine, biology, pharmaceutical studies, engineering, economics, psychology, and social sciences. This book presents new advanced methods and related R codes to perform complex multivariate analyses. The prerequisites are a standard course in statistics and some background in multivariate analysis and R software.
A bibliography on stochastic orderings. Was there a real need for it? In a time of reference databases as the MathSci or the Science Citation Index or the Social Science Citation Index the answer seems to be negative. The reason we think that this bibliog raphy might be of some use stems from the frustration that we, as workers in the field, have often experienced by finding similar results being discovered and proved over and over in different journals of different disciplines with different levels of mathematical so phistication and accuracy and most of the times without cross references. Of course it would be very unfair to blame an economist, say, for not knowing a result in mathematical physics, or vice versa, especially when the problems and the languages are so far apart that it is often difficult to recognize the analogies even after further scrutiny. We hope that collecting the references on this topic, regardless of the area of application, will be of some help, at least to pinpoint the problem. We use the term stochastic ordering in a broad sense to denote any ordering relation on a space of probability measures. Questions that can be related to the idea of stochastic orderings are as old as probability itself. Think for instance of the problem of comparing two gambles in order to decide which one is more favorable.
This book is an introductionary course in stochastic ordering and dependence in the field of applied probability for readers with some background in mathematics. It is based on lectures and senlinars I have been giving for students at Mathematical Institute of Wroclaw University, and on a graduate course a.t Industrial Engineering Department of Texas A&M University, College Station, and addressed to a reader willing to use for example Lebesgue measure, conditional expectations with respect to sigma fields, martingales, or compensators as a common language in this field. In Chapter 1 a selection of one dimensional orderings is presented together with applications in the theory of queues, some parts of this selection are based on the recent literature (not older than five years). In Chapter 2 the material is centered around the strong stochastic ordering in many dimen sional spaces and functional spaces. Necessary facts about conditioning, Markov processes an"d point processes are introduced together with some classical results such as the product formula and Poissonian departure theorem for Jackson networks, or monotonicity results for some re newal processes, then results on stochastic ordering of networks, re~~ment policies and single server queues connected with Markov renewal processes are given. Chapter 3 is devoted to dependence and relations between dependence and ordering, exem plified by results on queueing networks and point processes among others.
This book introduces stochastic processes and their applications for students in engineering, industrial statistics, science, operations research, business, and finance. It provides the theoretical foundations for modeling time-dependent random phenomena encountered in these disciplines. Through numerous science and engineering-based examples and exercises, the author presents the subject in a comprehensible, practically oriented way, but he also includes some important proofs and theoretically challenging examples and exercises that will appeal to more mathematically minded readers. Solutions to most of the exercises are included either in an appendix or within the text.
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).
Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.