Download Free Stochastic Flows In The Brownian Web And Net Book in PDF and EPUB Free Download. You can read online Stochastic Flows In The Brownian Web And Net and write the review.

It is known that certain one-dimensional nearest-neighbor random walks in i.i.d. random space-time environments have diffusive scaling limits. Here, in the continuum limit, the random environment is represented by a `stochastic flow of kernels', which is a collection of random kernels that can be loosely interpreted as the transition probabilities of a Markov process in a random environment. The theory of stochastic flows of kernels was first developed by Le Jan and Raimond, who showed that each such flow is characterized by its -point motions. The authors' work focuses on a class of stochastic flows of kernels with Brownian -point motions which, after their inventors, will be called Howitt-Warren flows. The authors' main result gives a graphical construction of general Howitt-Warren flows, where the underlying random environment takes on the form of a suitably marked Brownian web. This extends earlier work of Howitt and Warren who showed that a special case, the so-called "erosion flow", can be constructed from two coupled "sticky Brownian webs". The authors' construction for general Howitt-Warren flows is based on a Poisson marking procedure developed by Newman, Ravishankar and Schertzer for the Brownian web. Alternatively, the authors show that a special subclass of the Howitt-Warren flows can be constructed as random flows of mass in a Brownian net, introduced by Sun and Swart. Using these constructions, the authors prove some new results for the Howitt-Warren flows.
This book offers a unified perspective on the study of complex systems with contributions written by leading scientists from various disciplines, including mathematics, physics, computer science, biology, economics and social science. It is written for researchers from a broad range of scientific fields with an interest in recent developments in complex systems.
This volume is dedicated to the memory of Marc Yor, who passed away in 2014. The invited contributions by his collaborators and former students bear testament to the value and diversity of his work and of his research focus, which covered broad areas of probability theory. The volume also provides personal recollections about him, and an article on his essential role concerning the Doeblin documents. With contributions by P. Salminen, J-Y. Yen & M. Yor; J. Warren; T. Funaki; J. Pitman& W. Tang; J-F. Le Gall; L. Alili, P. Graczyk & T. Zak; K. Yano & Y. Yano; D. Bakry & O. Zribi; A. Aksamit, T. Choulli & M. Jeanblanc; J. Pitman; J. Obloj, P. Spoida & N. Touzi; P. Biane; J. Najnudel; P. Fitzsimmons, Y. Le Jan & J. Rosen; L.C.G. Rogers & M. Duembgen; E. Azmoodeh, G. Peccati & G. Poly, timP-L Méliot, A. Nikeghbali; P. Baldi; N. Demni, A. Rouault & M. Zani; N. O'Connell; N. Ikeda & H. Matsumoto; A. Comtet & Y. Tourigny; P. Bougerol; L. Chaumont; L. Devroye & G. Letac; D. Stroock and M. Emery.
The authors study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Their focus throughout is on the domains which occur as open -orbits in the flag varieties for and , regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, the authors formulate and illustrate the general method by which correspondence spaces give rise to Penrose transforms between the cohomologies of distinct such orbits with coefficients in homogeneous line bundles.
Let be the automorphic representation of generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and be an arbitrary cuspidal, automorphic representation of . Using Furusawa's integral representation for combined with a pullback formula involving the unitary group , the authors prove that the -functions are "nice". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations have a functorial lifting to a cuspidal representation of . Combined with the exterior-square lifting of Kim, this also leads to a functorial lifting of to a cuspidal representation of . As an application, the authors obtain analytic properties of various -functions related to full level Siegel cusp forms. They also obtain special value results for and
The authors define combinatorial Floer homology of a transverse pair of noncontractible nonisotopic embedded loops in an oriented -manifold without boundary, prove that it is invariant under isotopy, and prove that it is isomorphic to the original Lagrangian Floer homology. Their proof uses a formula for the Viterbo-Maslov index for a smooth lune in a -manifold.
Joseph and Hodges-Levasseur (in the A case) described the spectra of all quantum function algebras on simple algebraic groups in terms of the centers of certain localizations of quotients of by torus invariant prime ideals, or equivalently in terms of orbits of finite groups. These centers were only known up to finite extensions. The author determines the centers explicitly under the general conditions that the deformation parameter is not a root of unity and without any restriction on the characteristic of the ground field. From it he deduces a more explicit description of all prime ideals of than the previously known ones and an explicit parametrization of .
Polynomial approximation on convex polytopes in is considered in uniform and -norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the -case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate -functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.
The authors develop elements of a general dilation theory for operator-valued measures. Hilbert space operator-valued measures are closely related to bounded linear maps on abelian von Neumann algebras, and some of their results include new dilation results for bounded linear maps that are not necessarily completely bounded, and from domain algebras that are not necessarily abelian. In the non-cb case the dilation space often needs to be a Banach space. They give applications to both the discrete and the continuous frame theory. There are natural associations between the theory of frames (including continuous frames and framings), the theory of operator-valued measures on sigma-algebras of sets, and the theory of continuous linear maps between -algebras. In this connection frame theory itself is identified with the special case in which the domain algebra for the maps is an abelian von Neumann algebra and the map is normal (i.e. ultraweakly, or weakly, or w*) continuous.
Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.