Download Free Stochastic Dynamics Modeling Solute Transport In Porous Media Book in PDF and EPUB Free Download. You can read online Stochastic Dynamics Modeling Solute Transport In Porous Media and write the review.

Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas are explained in an intuitive manner wherever possible with out compromising rigor. The solute transport problem in porous media saturated with water had been used as a natural setting to discuss the approaches based on stochastic dynamics. The work is also motivated by the need to have more sophisticated mathematical and computational frameworks to model the variability one encounters in natural and industrial systems. This book presents the ideas, models and computational solutions pertaining to a single problem: stochastic flow of contaminant transport in the saturated porous media such as that we find in underground aquifers. In attempting to solve this problem using stochastic concepts, different ideas and new concepts have been explored, and mathematical and computational frameworks have been developed in the process. Some of these concepts, arguments and mathematical and computational constructs are discussed in an intuititve manner in this book.
Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas are explained in an intuitive manner wherever possible with out compromising rigor.The solute transport problem in porous media saturated with water had been used as a natural setting to discuss the approaches based on stochastic dynamics. The work is also motivated by the need to have more sophisticated mathematical and computational frameworks to model the variability one encounters in natural and industrial systems. This book presents the ideas, models and computational solutions pertaining to a single problem: stochastic flow of contaminant transport in the saturated porous media such as that we find in underground aquifers. In attempting to solve this problem using stochastic concepts, different ideas and new concepts have been explored, and mathematical and computational frameworks have been developed in the process. Some of these concepts, arguments and mathematical and computational constructs are discussed in an intuititve manner in this book.
This research monograph presents a mathematical approach based on stochastic calculus which tackles the "cutting edge" in porous media science and engineering - prediction of dispersivity from covariance of hydraulic conductivity (velocity). The problem is of extreme importance for tracer analysis, for enhanced recovery by injection of miscible gases, etc. This book explains a generalised mathematical model and effective numerical methods that may highly impact the stochastic porous media hydrodynamics. The book starts with a general overview of the problem of scale dependence of the dispersion coefficient in porous media. Then a review of pertinent topics of stochastic calculus that would be useful in the modeling in the subsequent chapters is succinctly presented. The development of a generalised stochastic solute transport model for any given velocity covariance without resorting to Fickian assumptions from laboratory scale to field scale is discussed in detail. The mathematical approaches presented here may be useful for many other problems related to chemical dispersion in porous media.
This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport at the sediment-water interface and groundwater flow in unconfined aquifers; investigates two-dimensional solute transport from a varying pulse type point source and futile cycles in metabolic flux modeling; studies contaminant concentration prediction along unsteady groundwater flow and modeling synovial fluid flow in human joints; explores the modeling of soil organic carbon and crop growth simulation.
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.
In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in
Proceedings of the NATO Advanced Study Institute, Newark, Delaware, July 18-27, 1982
Handbook of Porous Media, Third Edition offers a comprehensive overview of the latest theories on flow, transport, and heat-exchange processes in porous media. It also details sophisticated porous media models which can be used to improve the accuracy of modeling in a variety of practical applications. Featuring contributions from leading experts i