Download Free Stem Cells In Reproductive Tissues And Organs Book in PDF and EPUB Free Download. You can read online Stem Cells In Reproductive Tissues And Organs and write the review.

This contributed volume gathers the latest knowledge in the field of stem cells in human reproductive organs, as well as animal models, and to consider the possibility of using this knowledge for clinical purposes. The scope of the book covers both clinical and basic knowledge of stem cells in both reproductive medicine (gynecology and obstetrics) and regenerative medicine as well as cellular and molecular medicine and reproductive biology. Chapters on basic stem cell knowledge in human reproductive tissues and organs or animal models are included, as well as clinical knowledge on their role in the manifestation of infertility and cancer and their clinical use.
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.
Stem cell science has the potential to impact human reproductive medicine significantly - cutting edge technologies allow the production and regeneration of viable gametes from human stem cells offering potential to preciously infertile patients. Written by leading experts in the field Stem Cells in Reproductive Medicine brings together chapters on the genetics and epigenetics of both the male and female gametes as well as advice on the production and regeneration of gene cells in men and women, trophoblasts and endometrium from human embryonic and adult stem cells. Although focussing mainly on the practical elements of the use of stem cells in reproductive medicine, the book also contains a section on new developments in stem cell research. The book is essential reading for reproductive medicine clinicians, gynecologists and embryologists who want to keep abreast of practical developments in this rapidly developing field.
Human reproductive cloning is an assisted reproductive technology that would be carried out with the goal of creating a newborn genetically identical to another human being. It is currently the subject of much debate around the world, involving a variety of ethical, religious, societal, scientific, and medical issues. Scientific and Medical Aspects of Human Reproductive Cloning considers the scientific and medical sides of this issue, plus ethical issues that pertain to human-subjects research. Based on experience with reproductive cloning in animals, the report concludes that human reproductive cloning would be dangerous for the woman, fetus, and newborn, and is likely to fail. The study panel did not address the issue of whether human reproductive cloning, even if it were found to be medically safe, would beâ€"or would not beâ€"acceptable to individuals or society.
The second edition of Stem Cells: Scientific Facts and Fiction provides the non-stem cell expert with an understandable review of the history, current state of affairs, and facts and fiction of the promises of stem cells. Building on success of its award-winning preceding edition, the second edition features new chapters on embryonic and iPS cells and stem cells in veterinary science and medicine. It contains major revisions on cancer stem cells to include new culture models, additional interviews with leaders in progenitor cells, engineered eye tissue, and xeno organs from stem cells, as well as new information on "organs on chips" and adult progenitor cells. In the past decades our understanding of stem cell biology has increased tremendously. Many types of stem cells have been discovered in tissues that everyone presumed were unable to regenerate in adults, the heart and the brain in particular. There is vast interest in stem cells from biologists and clinicians who see the potential for regenerative medicine and future treatments for chronic diseases like Parkinson's, diabetes, and spinal cord lesions, based on the use of stem cells; and from entrepreneurs in biotechnology who expect new commercial applications ranging from drug discovery to transplantation therapies. Explains in straightforward, non-specialist language the basic biology of stem cells and their applications in modern medicine and future therapy Includes extensive coverage of adult and embryonic stem cells both historically and in contemporary practice Richly illustrated to assist in understanding how research is done and the current hurdles to clinical practice
Virtually any disease that results from malfunctioning, damaged, or failing tissues may be potentially cured through regenerative medicine therapies, by either regenerating the damaged tissues in vivo, or by growing the tissues and organs in vitro and implanting them into the patient. Principles of Regenerative Medicine discusses the latest advances in technology and medicine for replacing tissues and organs damaged by disease and of developing therapies for previously untreatable conditions, such as diabetes, heart disease, liver disease, and renal failure. Key for all researchers and instituions in Stem Cell Biology, Bioengineering, and Developmental Biology The first of its kind to offer an advanced understanding of the latest technologies in regenerative medicine New discoveries from leading researchers on restoration of diseased tissues and organs
This volume covers all aspects of embryonic stem cell differentiation, including mouse embryonic stem cells, mouse embryonic germ cells, monkey and human embryonic stem cells, and gene discovery. * Early commitment steps and generation of chimeric mice* Differentiation to mesoderm derivatives* Gene discovery by manipulation of mouse embryonic stem cells
The power of stem cells for tissue development, regeneration, and renewal has been well known by embryologists and developmental biologists for many years. Those presently active in research in the stem cell field owe much to previous work by embryologists and cancer researchers for their insights into what stem cells can do. In the last 4- 5 years, the rapid expansion of the concept of adult tissue stem cells as pluripotent progenitors for various tissues has led to an even greater appreciation of the power of stem cells. The demonstration that both embryonic and adult tissue stem cells have the ability to produce progenitor cells for tissue renewal has opened vast possibilities for treatment of congenital deficiency diseases as well as for regeneration of damaged tissues. Older concepts of determination leading to loss of potential during differentiation of adult tissues are being replaced by newer ideas that cells with multiple potential exist in different forms in various adult organs and that cells thought to be restricted to differentiation to one cell type may be able to "transdifferentiate" into other tissue cell types. Thus, the concept of "embryonic rests" in adult tissues, hypothesized to be the cellular origin of cancer by Durante and Conheim in the 1870s, now can be expanded to include survival of pluripotential embryonic-like stem cells in adult tissues.
Stem Cells: Therapeutic Innovations under Control traces the discovery of stem cells and induced pluripotent cells. It establishes the link between knowledge about cell development and tissue engineering, and presents perspectives in regenerative medicine. Cell proliferation and tissue architecture open up unexpected applications in tissue engineering, with the development of tissues or organs. In this context emerges the need to address the issue of bioethics and regulatory considerations. Because stem cells can multiply and differentiate into cells specific to a particular tissue or organ, they represent vast potential in the health field. Traces the discovery of stem cells to link knowledge of cell development with tissue engineering Presents prospects in regenerative medicine Establishes the link between knowledge about cell development and tissue engineering