Download Free Statistics With Vague Data Book in PDF and EPUB Free Download. You can read online Statistics With Vague Data and write the review.

This monograph is an attempt to unify existing works in the field of random sets, random variables, and linguistic random variables with respect to statistical analysis. It is intended to be a tutorial research compendium. The material of the work is mainly based on the postdoctoral thesis (Ha bilitationsschrift) of the first author and on several papers recently published by both authors. The methods form the basis of a user-friendly software tool which supports the statistical inferenee in the presence of vague data. Parts of the manuscript have been used in courses for graduate level students of mathematics and eomputer scienees held by the first author at the Technical University of Braunschweig. The textbook is designed for readers with an advanced knowledge of mathematics. The idea of writing this book came from Professor Dr. H. Skala. Several of our students have significantly contributed to its preparation. We would like to express our gratitude to Reinhard Elsner for his support in typesetting the book, Jorg Gebhardt and Jorg Knop for preparing the drawings, Michael Eike and Jiirgen Freckmann for implementing the programming system and Giinter Lehmann and Winfried Boer for proofreading the manuscript. This work was partially supported by the Fraunhofer-Gesellschaft. We are indebted to D. Reidel Publishing Company for making the pub lication of this book possible and would especially like to acknowledge the support whieh we received from our families on this project.
Neutrosophic Statistics means statistical analysis of population or sample that has indeterminate (imprecise, ambiguous, vague, incomplete, unknown) data. For example, the population or sample size might not be exactly determinate because of some individuals that partially belong to the population or sample, and partially they do not belong, or individuals whose appurtenance is completely unknown. Also, there are population or sample individuals whose data could be indeterminate. In this book, we develop the 1995 notion of neutrosophic statistics. We present various practical examples. It is possible to define the neutrosophic statistics in many ways, because there are various types of indeterminacies, depending on the problem to solve.
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy measurement results. Furthermore, statistical methods are then generalized to the analysis of fuzzy data and fuzzy a-priori information. Key Features: Provides basic methods for the mathematical description of fuzzy data, as well as statistical methods that can be used to analyze fuzzy data. Describes methods of increasing importance with applications in areas such as environmental statistics and social science. Complements the theory with exercises and solutions and is illustrated throughout with diagrams and examples. Explores areas such quantitative description of data uncertainty and mathematical description of fuzzy data. This work is aimed at statisticians working with fuzzy logic, engineering statisticians, finance researchers, and environmental statisticians. It is written for readers who are familiar with elementary stochastic models and basic statistical methods.
The contributions in this book state the complementary rather than competitive relationship between Probability and Fuzzy Set Theory and allow solutions to real life problems with suitable combinations of both theories.
Classical probability theory and mathematical statistics appear sometimes too rigid for real life problems, especially while dealing with vague data or imprecise requirements. These problems have motivated many researchers to "soften" the classical theory. Some "softening" approaches utilize concepts and techniques developed in theories such as fuzzy sets theory, rough sets, possibility theory, theory of belief functions and imprecise probabilities, etc. Since interesting mathematical models and methods have been proposed in the frameworks of various theories, this text brings together experts representing different approaches used in soft probability, statistics and data analysis.
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
The formal description of non-precise data before their statistical analysis is, except for error models and interval arithmetic, a relatively young topic. Fuzziness is described in the theory of fuzzy sets but only a few papers on statistical inference for non-precise data exist. In many cases, for example when very small concentrations are being measured, it is necessary to describe the imprecision of data. Otherwise, the results of statistical analysis can be unrealistic and misleading. Fortunately, there is a straightforward technique for dealing with non-precise data. The technique - the generalized inference method - is explained in Statistical Methods for Non-Precise Data. Anyone who understands elementary statistical methods and simple stochastic models will be able to use this book to understand and work with non-precise data. The book includes explanations of how to cope with non-precise data in different practical situations, and makes an excellent graduate level text book for students, as well as a general reference for scientists and practitioners. Features
The existing sequential test using Bernoulli distribution can only be applied when no uncertainty/indeterminacy is found in testing the hypothesis. This paper introduces neutrosophic Bernoulli distribution and sequential test using the distribution. The operational procedure of the proposed test will be introduced and applied for testing the hypothesis in the presence of uncertainty.
This book illuminates the complex process of problem solving, including formulating the problem, collecting and analyzing data, and presenting the conclusions.