Download Free Statistical Test Theory For The Behavioral Sciences Book in PDF and EPUB Free Download. You can read online Statistical Test Theory For The Behavioral Sciences and write the review.

Since the development of the first intelligence test in the early 20th century, educational and psychological tests have become important measurement techniques to quantify human behavior. Focusing on this ubiquitous yet fruitful area of research, Statistical Test Theoryfor the Behavioral Sciences provides both a broad overview and a
Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.
This text is written for a one-semester introduction to statistical analysis course in sociology, criminal justice, social work, or psychology in which students will be exposed to the basic concepts and procedures in statistical analysis as it is applied in the social sciences. In Statistical Analysis in the Behavioral Sciences, Raymondo offers a text that provides clear and student-friendly explanations of statistical concepts, in which as much emphasis is placed on the purpose and interpretation of statistical analysis as on the traditional approach of how to perform statistical procedures. Through his clear and conversational writing style, by going beyond a surface interpretation, and by using "real-life" data, Raymondo sparks students' interest and understanding.
Statistics for the Behavioral Sciences is an introduction to statistics text that will engage students in an ongoing spirit of discovery by illustrating how statistics apply to modern-day research problems. By integrating instructions, screenshots, and practical examples for using IBM SPSS® Statistics software, the book makes it easy for students to learn statistical concepts within each chapter. Gregory J. Privitera takes a user-friendly approach while balancing statistical theory, computation, and application with the technical instruction needed for students to succeed in the modern era of data collection, analysis, and statistical interpretation.
This book provides an alternative method for measuring individual differences in psychological, educational, and other behavioral sciences studies. It is based on the assumptions of ordinal statistics as explained in Norman Cliff's 1996 Ordinal Methods for Behavioral Data Analysis. It provides the necessary background on ordinal measurement to permit its use to assess psychological and psychophysical tests and scales and interpret the data obtained. The authors believe that some of the behavioral measurement models used today do not fit the data or are inherently self-contradictory. Applications of these models can therefore lead to unwarranted inferences regarding the status of the derived variables. These methods can also be difficult to apply, particularly in small-sample contexts without making additional, unrealistic assumptions. Ordinal methods more closely reflect the original data, are simple to apply, and can be used in samples of any size. The book's approach is in essence a return to simple empiricism in psychological measurement. Ordinal Measurement in the Behavioral Sciences provides: *methods for analyzing test responses; *extensive discussions of ordinal approaches to analyzing data that are judgments of stimuli; *methods for treating psychological data in ways consistent with its ordinal nature so as to stimulate new developments in this area; and *ordinal test theory and the unfolding methods that are applicable to cross-cultural studies. Advanced students, researchers, and practitioners concerned with psychological measurement should find this book relevant. Measurement professionals will find it provides useful and simple methods that stimulate thought about measurement's real issues.
An introduction to statistics for the behavioural sciences in which emphasis is placed on developing and explaining statistics in the context of actual research problems. Formal statistical theory is minimized in favour of a conceptual approach to statistics.
Using and Interpreting Statistics in the Social, Behavioral, and Health Sciences is designed to be paired with any undergraduate introduction to research methods text used by students in a variety of disciplines. It introduces students to statistics at the conceptual level—examining the meaning of statistics, and why researchers use a particular statistical technique, rather than computational skills. Focusing on descriptive statistics, and some more advanced topics such as tests of significance, measures of association, and regression analysis, this brief, inexpensive text is the perfect companion to help students who have not yet taken an introductory statistics course or are confused by the statistics used in the articles they are reading.
Now in its fourth edition, Behavioral Research and Analysis: An Introduction to Statistics within the Context of Experimental Design presents an overview of statistical methods within the context of experimental design. It covers fundamental topics such as data collection, data analysis, interpretation of results, and communication of findings. New in the Fourth Edition: Extensive improvements based on suggestions from those using this book in the classroom Statistical procedures that have been developed and validated since the previous edition Each chapter in the body now contains relevant key words, chapter summaries, key word definitions, and end of chapter exercises (with answers) Revisions to include recent changes in the APA Style Manual When looking for a book for their own use, the authors found none that were totally suitable. They found books that either reviewed the basics of behavioral research and experimental design but provided only cursory coverage of statistical methods or they provided coverage of statistical methods with very little coverage of the research context within which these methods are used. No single resource provided coverage of methodology, statistics, and communication skills. In a classic example of necessity being the mother of invention, the authors created their own. This text is ideal for a single course that reviews research methods, essential statistics through multi-factor analysis of variance, and thesis (or major project) preparation without discussion of derivation of equations, probability theory, or mathematic proofs. It focuses on essential information for getting a research project completed without prerequisite math or statistics training. It has been revised many times to help students at a variety of academic levels (exceptional high school students, undergraduate honors students, masters students, doctoral students, and post-doctoral fellows) across varied academic disciplines (e.g., human factors and ergonomics, behavioral and social sciences, natural sciences, engineering, exercise and sport sciences, business and management, industrial hygiene and safety science, health and medical sciences, and more). Illustrating how to plan, prepare, conduct, and analyze an experimental or research report, the book emphasizes explaining statistical procedures and interpreting obtained results without discussing the derivation of equations or history of the method. Destined to spend more time on your desk than on the shelf, the book will become the single resource you reach for again and again when conducting scientific research and reporting it to the scientific community.
FUNDAMENTAL STATISTICS FOR THE BEHAVIORAL SCIENCES focuses on providing the context of statistics in behavioral research, while emphasizing the importance of looking at data before jumping into a test. This practical approach provides students with an understanding of the logic behind the statistics, so they understand why and how certain methods are used -- rather than simply carry out techniques by rote. Students move beyond number crunching to discover the meaning of statistical results and appreciate how the statistical test to be employed relates to the research questions posed by an experiment. Written in an informal style, the text provides an abundance of real data and research studies that provide a real-life perspective and help students learn and understand concepts. In alignment with current trends in statistics in the behavioral sciences, the text emphasizes effect sizes and meta-analysis, and integrates frequent demonstrations of computer analyses through SPSS and R. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Description: Incorporating a hands-on pedagogical approach, Nonparametric Statistics for Social and Behavioral Sciences presents the concepts, principles, and methods used in performing many nonparametric procedures. It also demonstrates practical applications of the most common nonparametric procedures using IBM's SPSS software. This text is the only current nonparametric book written specifically for students in the behavioral and social sciences. Emphasizing sound research designs, appropriate statistical analyses, and accurate interpretations of results, the text: Explains a conceptual framework for each statistical procedure Presents examples of relevant research problems, associated research questions, and hypotheses that precede each procedure Details SPSS paths for conducting various analyses Discusses the interpretations of statistical results and conclusions of the research With minimal coverage of formulas, the book takes a nonmathematical approach to nonparametric data analysis procedures and shows students how they are used in research contexts. Each chapter includes examples, exercises, and SPSS screen shots illustrating steps of the statistical procedures and resulting output.