Download Free Statistical Research Methods In The Life Sciences Book in PDF and EPUB Free Download. You can read online Statistical Research Methods In The Life Sciences and write the review.

Appropriate for all courses in statistical methods for the agricultural, life, health, and environmental sciences, this book offers a practical and modern approach that minimizes computation and emphasizes conceptual understanding. Rao continually emphasizes issues and topics most relevant to modern day research in the life sciences. For example, point and interval estimation take priority over testing of statistical hypothesis and methods and guidelines for determination of sample size are indicated whenever possible. Statistical Research Methods in the Life Sciences also presents a self-contained and complete discussion of each experimental situation considered. In the two-sample setting, for example, in addition to presenting the procedures under the usual analysis of variance assumption, Rao also presents methods for checking the validity of the assumptions.
Provides well-organized coverage of statistical analysis and applications in biology, kinesiology, and physical anthropology with comprehensive insights into the techniques and interpretations of R, SPSS®, Excel®, and Numbers® output An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences develops a conceptual foundation in statistical analysis while providing readers with opportunities to practice these skills via research-based data sets in biology, kinesiology, and physical anthropology. Readers are provided with a detailed introduction and orientation to statistical analysis as well as practical examples to ensure a thorough understanding of the concepts and methodology. In addition, the book addresses not just the statistical concepts researchers should be familiar with, but also demonstrates their relevance to real-world research questions and how to perform them using easily available software packages including R, SPSS®, Excel®, and Numbers®. Specific emphasis is on the practical application of statistics in the biological and life sciences, while enhancing reader skills in identifying the research questions and testable hypotheses, determining the appropriate experimental methodology and statistical analyses, processing data, and reporting the research outcomes. In addition, this book: • Aims to develop readers’ skills including how to report research outcomes, determine the appropriate experimental methodology and statistical analysis, and identify the needed research questions and testable hypotheses • Includes pedagogical elements throughout that enhance the overall learning experience including case studies and tutorials, all in an effort to gain full comprehension of designing an experiment, considering biases and uncontrolled variables, analyzing data, and applying the appropriate statistical application with valid justification • Fills the gap between theoretically driven, mathematically heavy texts and introductory, step-by-step type books while preparing readers with the programming skills needed to carry out basic statistical tests, build support figures, and interpret the results • Provides a companion website that features related R, SPSS, Excel, and Numbers data sets, sample PowerPoint® lecture slides, end of the chapter review questions, software video tutorials that highlight basic statistical concepts, and a student workbook and instructor manual An Introduction to Statistical Analysis in Research: With Applications in the Biological and Life Sciences is an ideal textbook for upper-undergraduate and graduate-level courses in research methods, biostatistics, statistics, biology, kinesiology, sports science and medicine, health and physical education, medicine, and nutrition. The book is also appropriate as a reference for researchers and professionals in the fields of anthropology, sports research, sports science, and physical education. KATHLEEN F. WEAVER, PhD, is Associate Dean of Learning, Innovation, and Teaching and Professor in the Department of Biology at the University of La Verne. The author of numerous journal articles, she received her PhD in Ecology and Evolutionary Biology from the University of Colorado. VANESSA C. MORALES, BS, is Assistant Director of the Academic Success Center at the University of La Verne. SARAH L. DUNN, PhD, is Associate Professor in the Department of Kinesiology at the University of La Verne and is Director of Research and Sponsored Programs. She has authored numerous journal articles and received her PhD in Health and Exercise Science from the University of New South Wales. KANYA GODDE, PhD, is Assistant Professor in the Department of Anthropology and is Director/Chair of Institutional Review Board at the University of La Verne. The author of numerous journal articles and a member of the American Statistical Association, she received her PhD in Anthropology from the University of Tennessee. PABLO F. WEAVER, PhD, is Instructor in the Department of Biology at the University of La Verne. The author of numerous journal articles, he received his PhD in Ecology and Evolutionary Biology from the University of Colorado.
This textbook teaches crucial statistical methods to answer research questions using a unique range of statistical software programs, including MINITAB and R. This textbook is developed for undergraduate students in agriculture, nursing, biology and biomedical research. Graduate students will also find it to be a useful way to refresh their statistics skills and to reference software options. The unique combination of examples is approached using MINITAB and R for their individual strengths. Subjects covered include among others data description, probability distributions, experimental design, regression analysis, randomized design and biological assay. Unlike other biostatistics textbooks, this text also includes outliers, influential observations in regression and an introduction to survival analysis. Material is taken from the author's extensive teaching and research in Africa, USA and the UK. Sample problems, references and electronic supplementary material accompany each chapter.
A Hands-On Approach to Teaching Introductory StatisticsExpanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the m
This textbook will help graduate students in non-statistics disciplines, advanced undergraduate researchers, and research faculty in the health sciences to learn, use and communicate results from many commonly used statistical methods. The material covered, and the manner in which it is presented, describe the entire data analysis process from hypothesis generation to writing the results in a manuscript. Chapters cover, among other topics: one and two-sample proportions, multi-category data, one and two-sample means, analysis of variance, and regression. Throughout the text, the authors explain statistical procedures and concepts using a non-statistical language. This accessible approach is complete with real-world examples and sample write-ups for the Methods and Results sections of scholarly papers. The text also allows for the concurrent use of the programming language R, which is an open-source program created, maintained and updated by the statistical community. R is freely available and easy to download.
This is an ideal text for advanced courses in research methods and experimental design. It argues that the methodology of quantitative research is a unified discipline with basic notions, procedures and ways of reasoning which can be applied across the social, behavioural and life sciences. Key designs, models and methods in research are covered by leading contributors in their field who seek to explain the fundamentals of the research process to enable the student to understand the broader implications and unifying themes.
This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.
Written in simple language with relevant examples, Statistical Methods in Biology: Design and Analysis of Experiments and Regression is a practical and illustrative guide to the design of experiments and data analysis in the biological and agricultural sciences. The book presents statistical ideas in the context of biological and agricultural sciences to which they are being applied, drawing on relevant examples from the authors’ experience. Taking a practical and intuitive approach, the book only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat® statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R. By the time you reach the end of the book (and online material) you will have gained: A clear appreciation of the importance of a statistical approach to the design of your experiments, A sound understanding of the statistical methods used to analyse data obtained from designed experiments and of the regression approaches used to construct simple models to describe the observed response as a function of explanatory variables, Sufficient knowledge of how to use one or more statistical packages to analyse data using the approaches described, and most importantly, An appreciation of how to interpret the results of these statistical analyses in the context of the biological or agricultural science within which you are working. The book concludes with a guide to practical design and data analysis. It gives you the understanding to better interact with consultant statisticians and to identify statistical approaches to add value to your scientific research.
Inspired by the Encyclopedia of Statistical Sciences, Second Edition, this volume outlines the statistical tools for successfully working with modern life and health sciences research Data collection holds an essential part in dictating the future of health sciences and public health, as the compilation of statistics allows researchers and medical practitioners to monitor trends in health status, identify health problems, and evaluate the impact of health policies and programs. Methods and Applications of Statistics in the Life and Health Sciences serves as a single, one-of-a-kind resource on the wide range of statistical methods, techniques, and applications that are applied in modern life and health sciences in research. Specially designed to present encyclopedic content in an accessible and self-contained format, this book outlines thorough coverage of the underlying theory and standard applications to research in related disciplines such as biology, epidemiology, clinical trials, and public health. Uniquely combining established literature with cutting-edge research, this book contains classical works and more than twenty-five new articles and completely revised contributions from the acclaimed Encyclopedia of Statistical Sciences, Second Edition. The result is a compilation of more than eighty articles that explores classic methodology and new topics, including: Sequential methods in biomedical research Statistical measures of human quality of life Change-point methods in genetics Sample size determination for clinical trials Mixed-effects regression models for predicting pre-clinical disease Probabilistic and statistical models for conception Statistical methods are explored and applied to population growth, disease detection and treatment, genetic and genomic research, drug development, clinical trials, screening and prevention, and the assessment of rehabilitation, recovery, and quality of life. These topics are explored in contributions written by more than 100 leading academics, researchers, and practitioners who utilize various statistical practices, such as election bias, survival analysis, missing data techniques, and cluster analysis for handling the wide array of modern issues in the life and health sciences. With its combination of traditional methodology and newly developed research, Methods and Applications of Statistics in the Life and Health Sciences has everything students, academics, and researchers in the life and health sciences need to build and apply their knowledge of statistical methods and applications.
Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap.