Download Free Statistical Quality Control For The Food Industry Book in PDF and EPUB Free Download. You can read online Statistical Quality Control For The Food Industry and write the review.

If an automobile tire leaks or an electric light switch fails, if we are short changed at a department store or erroneously billed for phone calls not made, if a plane departure is delayed due to a mechanical failure - these are rather ordinary annoyances which we have come to accept as normal occur rences. Contrast this with failure of a food product. If foreign matter is found in a food, if a product is discolored or crushed, if illness or discomfort occurs when a food product is eaten-the consumer reacts with anger, fear, and sometimes mass hysteria. The offending product is often returned to the seller, or a disgruntled letter is written to the manufacturer. In an extreme case, an expensive law suit may be filed against the company. The reaction is almost as severe if the failure is a difficult-to-open package or a leaking container. There is no tolerance for failure of food products. Dozens of books on quality written for hardware or service industries discuss failure rates, product reliability, serviceability, maintainability, warran ty, and repair. Manufacturers in the food industry cannot use these measure ments: food reliability must be 100%, failure rate 0%. Serviceability, main tainability, warranty, and repair are meaningless terms to food processors.
Food quality systems; control charts; fundamentals; sampling; test methods; product specifications; process capability; process control; sensory control; net content control; design of experiments; vendor quality assurance; implementing a quality control program; the computer and process control.
A comprehensive treatment for implementing Statistical Process Control (SPC) in the food industry This book provides managers, engineers, and practitioners with an overview of necessary and relevant tools of Statistical Process Control, a roadmap for their implementation, the importance of engagement and teamwork, SPC leadership, success factors of the readiness and implementation, and some of the key lessons learned from a number of food companies. Illustrated with numerous examples from global real-world case studies, this book demonstrates the power of various SPC tools in a comprehensive manner. The final part of the book highlights the critical challenges encountered while implementing SPC in the food industry globally. Statistical Process Control for the Food Industry: A Guide for Practitioners and Managers explores the opportunities to deliver customized SPC training programs for local food companies. It offers insightful chapter covering everything from the philosophy and fundamentals of quality control in the food industry all the way up to case studies of SPC application in the food industry on both the quality and safety aspect, making it an excellent "cookbook" for the managers in the food industry to assess and initiating the SPC application in their respective companies. Covers concise and clear guidelines for the application of SPC tools in any food companies' environment Provides appropriate guidelines showing the organizational readiness level before the food companies adopt SPC Explicitly comments on success factors, motivations, and challenges in the food industry Addresses quality and safety issues in the food industry Presents numerous, global, real-world case studies of SPC in the food industry Statistical Process Control for the Food Industry: A Guide for Practitioners and Managers can be used to train upper middle and senior managers in improving food quality and reducing food waste using SPC as one of the core techniques. It's also an excellent book for graduate students of food engineering, food quality management and/or food technology, and process management.
Quality Control in the Food Industry, Volume 1 focuses on the general aspects of quality control in the food industry, emphasizing the controllable factors that affect the quality of the finished product, including the selection of raw materials, processing methods, packaging, storage, and distribution. The book describes the principles of quality control and some important concepts such as sensory assessment and statistical approaches, along with food standards and health problems in quality control. This volume is organized into six chapters and begins with an overview of the application, organization, related problems, techniques, and prospects of quality control. The next chapters focus on the chemical and microbiological aspects of health problems in quality control; fundamental concepts in statistics as applied to quality control from sampling to the estimation of ingredients; and taste testing as an approach to quality control of processed foods. The book concludes by considering the importance, limitations, and problems associated with food standards, with special reference to their international aspects. This book will be of interest to food scientists and technologists, managers in the food industry, and students.
Revised and expanded, this Second Edition continues to explore the modern practice of statistical quality control, providing comprehensive coverage of the subject from basic principles to state-of-the-art concepts and applications. The objective is to give the reader a thorough grounding in the principles of statistical quality control and a basis for applying those principles in a wide variety of both product and nonproduct situations. Divided into four parts, it contains numerous changes, including a more detailed discussion of the basic SPC problem-solving tools and two new case studies, expanded treatment on variable control charts with new examples, a chapter devoted entirely to cumulative-sum control charts and exponentially-weighted, moving-average control charts, and a new section on process improvement with designed experiments.
Producing products of reliable quality is vitally important to the food and beverage industry. In particular, companies often fail to ensure that the sensory quality of their products remains consistent, leading to the sale of goods which fail to meet the desired specifications or are rejected by the consumer. This book is a practical guide for all those tasked with using sensory analysis for quality control (QC) of food and beverages. Chapters in part one cover the key aspects to consider when designing a sensory QC program. The second part of the book focuses on methods for sensory QC and statistical data analysis. Establishing product sensory specifications and combining instrumental and sensory methods are also covered. The final part of the book reviews the use of sensory QC programs in the food and beverage industry. Chapters on sensory QC for taint prevention and the application of sensory techniques for shelf-life assessment are followed by contributions reviewing sensory QC programs for different products, including ready meals, wine and fish. A chapter on sensory QC of products such as textiles, cosmetics and cars completes the volume. Sensory analysis for food and beverage quality control is an essential reference for anyone setting up or operating a sensory QC program, or researching sensory QC. Highlights key aspects to consider when designing a quality control program including sensory targets and proficiency testing Examines methods for sensory quality control and statistical data analysis Reviews the use of sensory quality control programs in the food and beverage industry featuring ready meals, wine and fish
"Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines.Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences.A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, provides students with a solid base of conceptual and practical knowledge."--
Considering the ability of food processing companies to consistently manu facture safe foods with uniform quality over the past 20 or 30 years without these new tools and new systems, one might expect that quality control improvements would be marginal. On the other hand, these changes have already provided sub stantial opportunities for process and product improvement. This second edition is intended to update the basic concepts and discuss some of the new ones. Preface to the First Edition If an automobile tire leaks or an electric light switch fails, if we are short-changed at a department store or erroneously billed for phone calls not made, if a plane de parture is delayed due to a mechanical failure-these are rather ordinary annoy ances which we have come to accept as normal occurrences. Contrast this with failure of a food product. If foreign matter is found in a food, if a product is discolored or crushed, if illness or discomfort occurs when a food product is eaten-the consumer reacts with anger, fear, and sometimes mass hys teria. The offending product is often returned to the seller, or a disgruntled letter is written to the manufacturer. In an extreme case, an expensive law suit may be filed against the company. The reaction is almost as severe if the failure is a dif ficult-to-open package or a leaking container. There is no tolerance for failure of food products.
Presenting mathematical prerequisites in summary tables, this book explains fundamental techniques of mathematical modeling processes essential to the food industry. The author focuses on providing an in-depth understanding of modeling techniques, rather than the finer mathematical points. Topics covered include modeling of transport phenomena, kin