Download Free Spectroscopy Of Light And Heavy Quarks Book in PDF and EPUB Free Download. You can read online Spectroscopy Of Light And Heavy Quarks and write the review.

We present preliminary results for the D{sub s} meson spectrum and decay constants in unquenched lattice QCD. Simulations are carried out with 2 + 1 dynamical quarks using gauge configurations generated by the MILC collaboration. We use the ''asqtad'' a2 improved staggered action for the light quarks, and the clover heavy quark action with the Fermilab interpretation. We compare our spectrum results with the newly discovered 0 and 1 states in the D{sub s} system.
This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation.
This book provides an update on our understanding of strong interaction, with theoretical and experimental highlights included. It is divided into five sections. The first section is devoted to the investigations into and the latest results on the mechanism of quark confinement. The second and third sections focus respectively on light and heavy quarks (effective field theories, SchwingerOCoDyson approach and lattice QCD results). The fourth section deals with the deconfinement mechanism and quarkOCogluon plasma formation signals. The last section presents highlights of experiments, new physics beyond QCD, and nonperturbative approaches in other theories (strings and SUSY) that may be useful in QCD."
This book provides an update on our understanding of strong interaction, with theoretical and experimental highlights included. It is divided into five sections. The first section is devoted to the investigations into and the latest results on the mechanism of quark confinement. The second and third sections focus respectively on light and heavy quarks (effective field theories, Schwinger-Dyson approach and lattice QCD results). The fourth section deals with the deconfinement mechanism and quark-gluon plasma formation signals. The last section presents highlights of experiments, new physics beyond QCD, and nonperturbative approaches in other theories (strings and SUSY) that may be useful in QCD.
Hadrons containing heavy quarks, in particular b quarks, play an important role in high energy physics. Measurements of their electroweak interactions are used to test the Standard Model and search for new physics. For the comparison of experimental results with theoretical predictions, nonperturbative calculations of hadronic matrix elements within the theory of quantum chromodymanics are required. Such calculations can be performed from first principles by formulating QCD on a Euclidean spacetime grid and computing the path integral numerically. Including b quarks in lattice QCD calculations requires special techniques as the lattice spacing in present computations usually can not be chosen fine enough to resolve their Compton wavelength. In this work, improved nonrelativistic lattice actions for heavy quarks are used to perform calculations of the bottom hadron mass spectrum and of form factors for heavy-to-light decays. In heavy-to-light decays, additional complications arise at high recoil, when the momentum of the light meson reaches a magnitude comparable to the cutoff imposed by the lattice. Discretisation errors at high recoil can be reduced by working in a frame of reference where the heavy and light mesons move in opposite directions. Using a formalism referred to as moving nonrelativistic QCD (mNRQCD), the nonrelativistic expansion for the heavy quark can be performed around a state with an arbitrary velocity. This dissertation begins with a review of the fundamentals of lattice QCD. Then, the construction of effective Lagrangians for heavy quarks in the continuum and on the lattice is discussed in detail. A highly improved lattice mNRQCD action is derived and its effectiveness is demonstrated by nonperturbative tests involving both heavy-heavy and heavy-light mesons at several frame velocities. This mNRQCD action is then used in combination with a staggered action for the light quarks to calculate hadronic matrix elements relevant for rare B decays, including B --> K* gamma and B --> K l l. A major contribution to the uncertainty of the results also comes from statistical errors. The effectiveness of random-wall sources to reduce these errors is studied. As another application of a nonrelativistic heavy quark action, the spectrum of bottomonium is calculated and masses of several bottom baryons are predicted. In these computations, the light quarks are implemented with a domain wall action.
The confinement mechanism of the quarks in QCD is one of the most challenging and open problems in physics. Confinement is a nonperturbative phenomenon, and a definite way to handle it has not yet been found in field theory. There are lattice calculations that can produce the low-lying states of the spectrum and ?measure? many important physical quantities, but nevertheless the development of analytical techniques is of extreme importance for understanding the physics involved in confinement. In this respect it is important to test the results obtained directly from the theory (Bethe-Salpeter kernel, effective Hamiltonians, quark potential, etc.) on the spectrum, form factors and decays of bound states of quarks and gluons, and to relate them to the results of lattice theory.In this book, the question of the confinement mechanism is addressed; explanations in terms of monopoles, instantons and dyons are reviewed and the connection with duality is discussed.
Novel forms of matter, such as states made of gluons (glueballs), multiquark mesons or baryons and hybrid mesons are predicted by low energy QCD, for which several candidates have recently been identified. Searching for such exotic states of matter and studying their production and decay properties in detail has become a flourishing field at the experimental facilities now available or being built - e.g. BESIII in Beijing, BELLE II at SuperKEKB, GlueX at Jefferson Lab, PANDA at FAIR, J-PARC and in the upgraded LHC experiments, in particular LHCb. A modern primer in the field is required so as to both revive and update the teaching of a new generation of researchers in the field of QCD. These lectures on hadron spectroscopy are intended for Master and PhD students and have been originally developed for a course delivered at the Stefan Meyer Institute of the Austrian Academy of Sciences. They are phenomenologically oriented and intended as complementary material for basic courses in particle and nuclear physics. The book describes the spectra of light and heavy mesons and baryons, and introduces the fundamental properties based on symmetries. Further, it derives multiplet structures, mixing angle, decay coupling constants, magnetic moments of baryons, and predictions for multiquark states and compares these with suitable experimental data. Basic methods of calculating decay angular distributions and determining masses and widths of resonances are also presented. The appendices provide students and newcomers to the field with the necessary background information, and include a set of problems and solutions.