Download Free Spectroscopy For The Biological Sciences Book in PDF and EPUB Free Download. You can read online Spectroscopy For The Biological Sciences and write the review.

An introduction to the physical principles of spectroscopy and their applications to the biological sciences Advances in such fields as proteomics and genomics place new demands on students and professionals to be able to apply quantitative concepts to the biological phenomena that they are studying. Spectroscopy for the Biological Sciences provides students and professionals with a working knowledge of the physical chemical aspects of spectroscopy, along with their applications to important biological problems. Designed as a companion to Professor Hammes's Thermodynamics and Kinetics for the Biological Sciences, this approachable yet thorough text covers the basic principles of spectroscopy, including: * Fundamentals of spectroscopy * Electronic spectra * Circular dichroism and optical rotary dispersion * Vibration in macromolecules (IR, Raman, etc.) * Magnetic resonance * X-ray crystallography * Mass spectrometry With a minimum of mathematics and a strong focus on applications to biology, this book will prepare current and future professionals to better understand the quantitative interpretation of biological phenomena and to utilize these tools in their work.
In-cell NMR spectroscopy is a relatively new field. Despite its short history, recent in-cell NMR-related publications in major journals indicate that this method is receiving significant general attention. This book provides the first informative work specifically focused on in-cell NMR. It details the historical background of in-cell NMR, host cells for in-cell NMR studies, methods for in-cell biological techniques and NMR spectroscopy, applications, and future perspectives. Researchers in biochemistry, biophysics, molecular biology, cell biology, structural biology as well as NMR analysts interested in biological applications will all find this book valuable reading.
Vibrational Spectroscopy Applications in Biomedical, Pharmaceutical and Food Sciences synthesizes the latest research on the applications of vibrational spectroscopy in biomedical, pharmaceutical and food analysis. Suitable for graduate-level students as well as experienced researchers in academia and industry, this book is organized into five distinct sections. The first deals with the fundamentals of vibrational spectroscopy, with the second presenting the most important sampling methodology used for infrared and Raman spectroscopy in various fields of interest. Since spectroscopy is the study of the interaction of electromagnetic radiation with matter, this section deals with the characteristics, properties and absorption of electromagnetic radiation. Final sections describe the analytical studies performed all over the world in biomedical, pharmaceutical and in the food sciences. - Presents a critical discussion of many of the applications of vibrational spectroscopy - Covers details of the analytical methodologies used in pharmaceutical and biomedical applications - Discusses the latest developments in pharmaceutical and biomedical analysis of both small and large molecules
Raman spectroscopy has been known and used as a technique for 80 years, originally for the study of inorganic substances. Recent advances in underlying technology, such as lasers, detectors, filters and components, have transformed the technique into a very effective modern tool for studying complex biological problems. Professor Mahmoud Ghomi (of the University of Paris XIII) has edited this book on the applications of Raman spectroscopy to biology, covering in a readily accessible way the area from basic studies to the diagnosis of disease. The early chapters provide background information on basic principles underlying the main Raman methods covered in the book, with information on Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Fluorescence (SEF), as well as giving accounts of applications to biomolecular and cellular investigations. Among the topics covered are studies of drugs and their complexes with biomolecules on nanoparticles, application of SERS to blood analysis, studies of single cells and of applications to human cancer diagnostics.This will be a useful book for experimental scientists in academic, governmental, industrial and clinical environments and for those entering the field of biomolecular spectroscopy.
The authors describe basic theoretical concepts of vibrational spectroscopy, address instrumental aspects and experimental procedures, and discuss experimental and theoretical methods for interpreting vibrational spectra. It is shown how vibrational spectroscopy provides information on general aspects of proteins, such as structure, dynamics, and protein folding. In addition, the authors use selected examples to demonstrate the application of Raman and IR spectroscopy to specific biological systems, such as metalloproteins, and photoreceptors. Throughout, references to extensive mathematical and physical aspects, involved biochemical features, and aspects of molecular biology are set in boxes for easier reading. Ideal for undergraduate as well as graduate students of biology, biochemistry, chemistry, and physics looking for a compact introduction to this field.
NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data processing. End of chapter exercises are included to emphasize important concepts. Fundamentals of Protein NMR Spectroscopy not only offer students a systematic, in-depth, understanding of modern NMR spectroscopy and its application to biomolecular systems, but will also be a useful reference for the experienced investigator.
Although infrared spectroscopy has been applied with success to the study of important biological and biomedical processes for many years, key advances in this vibrant technique have led to its increasing use, ranging from characterization of individual macromolecules (DNA, RNA, lipids, proteins) to human tissues, cells and their components. Infrared spectroscopy thus has a significant role to play in the analysis of the vast number of genes and proteins being identified by the various genomic sequencing projects. Whilst this book gives an overview of the field, it highlights more recent developments, such as the use of bright synchrotron radiation for recording infrared spectra, the development of two-dimensional infrared spectroscopy and the ability to record infrared spectra at ultra fast speeds.
The goal of this book is to present an overview of applications of molecular spectroscopy to investigations in organic and inorganic materials, foodstuffs, biosamples and biomedicine, and novel characterization and quantitation methods. This text is a compilation of selected research articles and reviews covering current efforts in various applications of molecular spectroscopy. Sections 1 and 2 deal, respectively, with spectroscopic studies of inorganic and organic materials. Section 3 provides applications of molecular spectroscopy to biosamples and biomedicine. Section 4 explores spectroscopic characterization and quantitation of foods and beverages. Lastly, Section 5 presents research on novel spectroscopic methodologies. Overall, this book should be a great source of scientific information for anyone involved in characterization, quantitation, and method development.
At the time that the editors conceived the idea of trying to organize the meeting on which the contents of this volume are based and which became, in March 1980, a NATO Advanced Study Institute, the techniques of time-resolved fluorescence spectroscopy, in both the nanosecond and sub-nanosecond time-domains, might reasonably have been said to be coming of age, both in their execution and in the analysis and interpretation of the results obtained. These techniques, then as now, comprised mainly a number of pulse methods using laser, flash-lamp or, most recently, synchrotron radiation. In addition, significant developments in the more classical phase approach had also rendered that method popular, utilizing either modulation of an otherwise continuous source or, again recently, the ultra-rapid pulse rate attainable with a synchrotron source. In general terms, time-resolved fluorescence studies are capable, under appropriate conditions, of supplying direct kinetic information on both photophysics and various aspects of molecular, macromolecular and supramolecular structure and dynamics. The nanosecond and sub-nanosecond time-scales directly probed render these techniques particularly appropriate in studying relaxation and fluctuation processes in macromolecules, particularly biopolymers (e. g. proteins, nucleic acids), in supramolecular assemblies such as cell membranes, and in a variety of relatively simpler model systems.
Written by an international panel of professional and academic peers, the book provides the engineer and technologist working in research, development and operations in the food industry with critical and readily accessible information on the art and science of infrared spectroscopy technology. The book should also serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions.Infrared (IR) Spectroscopy deals with the infrared part of the electromagnetic spectrum. It measure the absorption of different IR frequencies by a sample positioned in the path of an IR beam. Currently, infrared spectroscopy is one of the most common spectroscopic techniques used in the food industry. With the rapid development in infrared spectroscopic instrumentation software and hardware, the application of this technique has expanded into many areas of food research. It has become a powerful, fast, and non-destructive tool for food quality analysis and control.Infrared Spectroscopy for Food Quality Analysis and Control reflects this rapid technology development. The book is divided into two parts. Part I addresses principles and instruments, including theory, data treatment techniques, and infrared spectroscopy instruments. Part II covers the application of IRS in quality analysis and control for various foods including meat and meat products, fish and related products, and others. - Explores this rapidly developing, powerful and fast non-destructive tool for food quality analysis and control - Presented in two Parts -- Principles and Instruments, including theory, data treatment techniques, and instruments, and Application in Quality Analysis and Control for various foods making it valuable for understanding and application - Fills a need for a comprehensive resource on this area that includes coverage of NIR and MVA