Download Free Spectral Properties Of Noncommuting Operators Book in PDF and EPUB Free Download. You can read online Spectral Properties Of Noncommuting Operators and write the review.

Forming functions of operators is a basic task of many areas of linear analysis and quantum physics. Weyl’s functional calculus, initially applied to the position and momentum operators of quantum mechanics, also makes sense for finite systems of selfadjoint operators. By using the Cauchy integral formula available from Clifford analysis, the book examines how functions of a finite collection of operators can be formed when the Weyl calculus is not defined. The technique is applied to the determination of the support of the fundamental solution of a symmetric hyperbolic system of partial differential equations and to proving the boundedness of the Cauchy integral operator on a Lipschitz surface.
The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.
The present volume contains a collection of original research articles and expository contributions on recent developments in operator theory and its multifaceted applications. They cover a wide range of themes from the IWOTA 2010 conference held at the TU Berlin, Germany, including spectral theory, function spaces, mathematical system theory, evolution equations and semigroups, and differential and difference operators. The book encompasses new trends and various modern topics in operator theory, and serves as a useful source of information to mathematicians, scientists and engineers.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.
This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.
This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing and presenting the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly."
This volume is intended to collect important research results to the lectures and discussions which took Place in Rome, at the INdAM Workshop on Different Notions of Regularity for Functions of Quaternionic Variables in September 2010. This volume will collect recent and new results, which are connected to the topic covered during the workshop. The work aims at bringing together international leading specialists in the field of Quaternionic and Clifford Analysis, as well as young researchers interested in the subject, with the idea of presenting and discussing recent results, analyzing new trends and techniques in the area and, in general, of promoting scientific collaboration. Particular attention is paid to the presentation of different notions of regularity for functions of hypercomplex variables, and to the study of the main features of the theories that they originate.