Download Free Special Issue Featuring Selected Papers From The 13th European Micromechanics Workshop Mme 02 Book in PDF and EPUB Free Download. You can read online Special Issue Featuring Selected Papers From The 13th European Micromechanics Workshop Mme 02 and write the review.

This open access book focuses on Switzerland-based medium-sized companies with a longstanding export tradition and a proven dominance in global niche markets. Based upon in-depth documentation and analysis of 36 Swiss companies over their entire history, an expert team of authors presents several parallels in the pathways and success factors which allowed these firms to become dominant and operate from a high-cost location such as Switzerland. The book enhances these insights by providing detailed company profiles documenting the company history, development, and how their relevant global niche positions were reached. Readers will benefit from these profiles as they compile a diverse selection of industries, mainly active within the B2B sector, with mostly mature companies (60 years to older than 100 years since founding) and different types of ownership structures including family firms. ‘Masterpieces of Swiss Entrepreneurship’ brings unique learning opportunities to owners and leaders of SMEs in Switzerland and elsewhere. Findings are based on detailed bottom-up research of 36 companies -- without any preconceived notions. The book is both conceptual and practical. It fosters understanding for different choices in development pathways and management practices. Matti Alahuhta, Chairman DevCo Partners, ex-CEO Kone, Board member of several global listed companies, Helsinki, Finland Start-up entrepreneurs need proven models from industry which demonstrate the various paths to success. “Masterpieces of Swiss Entrepreneurship” provides deep insights highlighting these models and the important trade-offs entrepreneurial teams must consider when choosing the path of high growth or of maximum control, as they are often mutually exclusive. Gina Domanig, Managing Partner, Emerald Technology Ventures, Zurich
Climate change is one of the main threats to modern society. This phenomenon is associated with an increase in greenhouse gas (GHGs, mainly carbon dioxide—CO2) emissions due to anthropogenic activities. The main causes are the burning of fossil fuels and land use change (deforestation). Climate change impacts are associated with risks to basic needs (health, food security, and clean water), as well as risks to development (jobs, economic growth, and the cost of living). The processes involving CO2 capture and storage are gaining attention in the scientific community as an alternative for decreasing CO2 emissions, reducing its concentration in ambient air. The carbon capture and storage (CCS) methodologies comprise three steps: CO2 capture, CO2 transportation, and CO2 storage. Despite the high research activity within this topic, several technological, economic, and environmental issues as well as safety problems remain to be solved, such as the following needs: increase of CO2 capture efficiency, reduction of process costs, and verification of the environmental sustainability of CO2 storage.
Modern perfumery is a blend of art, science and technology, with chemistry being the central science involved. The Chemistry of Fragrances aims to educate and entertain, and inform the audience of the very latest chemistry, techniques and tools applied to fragrance creativity. Beginning with the history of perfumes, which goes back over fifty thousand years, the book goes on to discuss the structure of the Perfume Industry today. The focus then turns to an imaginary brief to create a perfume, and the response to it, including that of the chemist and the creative perfumer. Consumer research, toxicological concerns, and the use of the electronic nose are some of the topics discussed on this journey of discovery. Written by respected experts in their fields, this unique book gives an insider view of ""mixing molecules"" from behind the portals of modern-day alchemy. It will be enjoyed by chemists and marketeers at all levels.
This book is organized around the various sensing techniques used to achieve structural health monitoring. Its main focus is on sensors, signal and data reduction methods and inverse techniques, which enable the identification of the physical parameters, affected by the presence of the damage, on which a diagnostic is established. Structural Health Monitoring is not oriented by the type of applications or linked to special classes of problems, but rather presents broader families of techniques: vibration and modal analysis; optical fibre sensing; acousto-ultrasonics, using piezoelectric transducers; and electric and electromagnetic techniques. Each chapter has been written by specialists in the subject area who possess a broad range of practical experience. The book will be accessible to students and those new to the field, but the exhaustive overview of present research and development, as well as the numerous references provided, also make it required reading for experienced researchers and engineers.
Nanoscale Processing outlines recent advances in processing techniques for a range of nanomaterial types. New developments in the processing of nanostructured materials are being applied in diverse fields. This book offers in-depth information and analysis of a range of processing techniques for nanostructures, and also covers nanocharacterization aspects thoroughly. Topics covered include zero dimensional nanostructures, nanostructured biomaterials, carbon-based nanostructures, polymeric and liposomal nanostructures, and quantum dots. This book is an important resource for materials scientists and engineers looking to learn more about a variety of processing techniques for various nanomaterial classes, for use in both the industrial and biomedical sectors. - Explains major nanoscale processing techniques, outlining in which situations each should be used - Discuses a range of nanomaterial classes, including nanobiomaterials, polymeric nanomaterials, optical nanomaterials and magnetic nanomaterials - Explores the challenges of using certain processing techniques for certain classes of nanomaterial
Micro-assembly is a key enabling technology for cost effective manufacture of new generations of complex micro products. It is also a critical technology for retaining mdustrial capabilities in high labour cost areas such as Europe since up to 80% of the production cost in some industries is attributed directly to assembly processes. With the continuous trend for product miniaturisation, the scientific and technologi cal developments in micro-assembly are expected to have a significant long-term economic, demographic and social impact. A distinctive feature of the process is that surface forces are often dominant over gravity forces, which determines a number of specific technical challenges. Critical areas which are currently being addressed include development of assembly systems with high positional accuracy, micro gripping methods that take into ac count the adhesive surface forces, high precision micro-feeding techniques and mi cro-joining processes. Micro-assembly has developed rapidly over the last few years and all the pre dictions are that it will remain a critical technology for high value products in a number of key sectors such as healthcare, communications, defence and aerospace. The key challenge is to match the significant technological developments with a new generation of micro products that will establish firmly micro-assembly as a core manufacturing process.
The collection focuses on the advancements of characterization of minerals, metals, and materials and the applications of characterization results on the processing of these materials. Advanced characterization methods, techniques, and new instruments are emphasized. Areas of interest include, but are not limited to: · Novel methods and techniques for characterizing materials across a spectrum of systems and processes. · Characterization of mechanical, thermal, electrical, optical, dielectric, magnetic, physical, and other properties of materials. · Characterization of structural, morphological, and topographical natures of materials at micro- and nano- scales. · Characterization of extraction and processing including process development and analysis. · Advances in instrument developments for microstructure analysis and performance evaluation of materials, such as computer tomography (CT), X-ray and neutron diffraction, electron microscopy (SEM, FIB, TEM), and spectroscopy (EDS, WDS, EBSD) techniques. · 2D and 3D modelling for materials characterization. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
Volume is indexed by Thomson Reuters CPCI-S (WoS).This collection of more than 204 peer-reviewed papers on Composite Science and Technology covers: mechanics of composites, infrastructural composites, non-destructive evaluation and characterization of composites, fracture and fatigue of composites, numerical and mathematical modelling, ceramic matrices, composites, metal-matrix composites, composite manufacturing, polymer composites, smart materials and structures, nano-composites, bio-composites and structural health monitoring. This makes it a handy guide to the state-of-the-art of this field.
Now in its third edition, Fundamentals of Microfabrication and Nanotechnology continues to provide the most complete MEMS coverage available. Thoroughly revised and updated the new edition of this perennial bestseller has been expanded to three volumes, reflecting the substantial growth of this field. It includes a wealth of theoretical and practical information on nanotechnology and NEMS and offers background and comprehensive information on materials, processes, and manufacturing options. The first volume offers a rigorous theoretical treatment of micro- and nanosciences, and includes sections on solid-state physics, quantum mechanics, crystallography, and fluidics. The second volume presents a very large set of manufacturing techniques for micro- and nanofabrication and covers different forms of lithography, material removal processes, and additive technologies. The third volume focuses on manufacturing techniques and applications of Bio-MEMS and Bio-NEMS. Illustrated in color throughout, this seminal work is a cogent instructional text, providing classroom and self-learners with worked-out examples and end-of-chapter problems. The author characterizes and defines major research areas and illustrates them with examples pulled from the most recent literature and from his own work.