Download Free Spatio Temporal Variability Of Wildfires And Their Climate Drivers From Continental To Global Scale Book in PDF and EPUB Free Download. You can read online Spatio Temporal Variability Of Wildfires And Their Climate Drivers From Continental To Global Scale and write the review.

Global Change studies are increasingly being considered a vital source of information to understand the Earth Environment, in particular in the framework of human-induced climate change and land use transformation. Satellite Earth Observing systems provide a unique tool to monitor those changes. While the range of applications and innovative techniques is constantly increasing, this book provides a summary of key case studies where satellite data offer critical information to understand the causes and effects of those environmental changes, minimizing their negative impacts. This book will be of interest to researchers and practitioners in the field of remote sensing, geographical information, meteorology and environmental sciences. Also scientists and graduate up to post-graduate level students in environmental science will find valuable information in this book.
In 1977, the Volkswagen Foundation sponsored the first of a series of International Symposia on Fire Ecology at Freiburg University, Federal Republic of Germany. The scope of the congresses was to create a platform for researchers at a time when the science of fire ecology was not yet recognized and established outside of North America and Australia. Whereas comprehensive information on the fire ecology of the northern boreal, the temperate, and the mediter ranean biotas is meanwhile available, it was recognized that conside rable gaps in information exist on the role of fire in tropical und sub tropical ecosystems. Thus it seemed timely to meet the growing scientific interest and public demand for reliable and updated infor mation and to synthesize the available knowledge of tropical fire ecology and the impact of tropical biomass burning on global eco system processes. The Third Symposium on Fire Ecology, again sponsored by the Volkswagen Foundation and held at Freiburg University in May 1989, was convened to prepare this first pantropical and multidisci plinary monograph on fire ecology!. The book, in which 46 scientists cooperated, analyzes those fire-related ecosystem processes which have not yet been described in a synoptic way. Following the editor's concept, duplication at previous efforts in describing tropical vegeta tion patterns and dynamics was avoided. Extensive bibliographical sources are given in the reference lists of the chapters.
Climate change is occurring, is caused largely by human activities, and poses significant risks for-and in many cases is already affecting-a broad range of human and natural systems. The compelling case for these conclusions is provided in Advancing the Science of Climate Change, part of a congressionally requested suite of studies known as America's Climate Choices. While noting that there is always more to learn and that the scientific process is never closed, the book shows that hypotheses about climate change are supported by multiple lines of evidence and have stood firm in the face of serious debate and careful evaluation of alternative explanations. As decision makers respond to these risks, the nation's scientific enterprise can contribute through research that improves understanding of the causes and consequences of climate change and also is useful to decision makers at the local, regional, national, and international levels. The book identifies decisions being made in 12 sectors, ranging from agriculture to transportation, to identify decisions being made in response to climate change. Advancing the Science of Climate Change calls for a single federal entity or program to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. Seven cross-cutting research themes are identified to support this scientific enterprise. In addition, leaders of federal climate research should redouble efforts to deploy a comprehensive climate observing system, improve climate models and other analytical tools, invest in human capital, and improve linkages between research and decisions by forming partnerships with action-oriented programs.
The book presents a wide range of techniques for extracting information from satellite remote sensing images in forest fire danger assessment. It covers the main concepts involved in fire danger rating, and analyses the inputs derived from remotely sensed data for mapping fire danger at both the local and global scale. The questions addressed concern the estimation of fuel moisture content, the description of fuel structural properties, the estimation of meteorological danger indices, the analysis of human factors associated with fire ignition, and the integration of different risk factors in a geographic information system for fire danger management.
Climate change poses many challenges that affect society and the natural world. With these challenges, however, come opportunities to respond. By taking steps to adapt to and mitigate climate change, the risks to society and the impacts of continued climate change can be lessened. The National Climate Assessment, coordinated by the U.S. Global Change Research Program, is a mandated report intended to inform response decisions. Required to be developed every four years, these reports provide the most comprehensive and up-to-date evaluation of climate change impacts available for the United States, making them a unique and important climate change document. The draft Fourth National Climate Assessment (NCA4) report reviewed here addresses a wide range of topics of high importance to the United States and society more broadly, extending from human health and community well-being, to the built environment, to businesses and economies, to ecosystems and natural resources. This report evaluates the draft NCA4 to determine if it meets the requirements of the federal mandate, whether it provides accurate information grounded in the scientific literature, and whether it effectively communicates climate science, impacts, and responses for general audiences including the public, decision makers, and other stakeholders.
Cambridge, UK : Cambridge University Press, 1998.
In North America, concepts of Historical Range of Variability are being employed in land-management planning for properties of private organizations and multiple government agencies. The National Park Service, U.S. Fish & Wildlife Service, Bureau of Land Management, U.S. Forest Service, and The Nature Conservancy all include elements of historical ecology in their planning processes. Similar approaches are part of land management and conservation in Europe and Australia. Each of these user groups must struggle with the added complication of rapid climate change, rapid land-use change, and technical issues in order to employ historical ecology effectively. Historical Environmental Variation in Conservation and Natural Resource Management explores the utility of historical ecology in a management and conservation context and the development of concepts related to understanding future ranges of variability. It provides guidance and insights to all those entrusted with managing and conserving natural resources: land-use planners, ecologists, fire scientists, natural resource policy makers, conservation biologists, refuge and preserve managers, and field practitioners. The book will be particularly timely as science-based management is once again emphasized in United States federal land management and as an understanding of the potential effects of climate change becomes more widespread among resource managers. Additional resources for this book can be found at: www.wiley.com/go/wiens/historicalenvironmentalvariation.
As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.