Download Free Space Robotics Book in PDF and EPUB Free Download. You can read online Space Robotics and write the review.

This book provides readers with basic concepts and design theories for space robots and presents essential methodologies for implementing space robot engineering by introducing several concrete projects as illustrative examples. Readers will gain a comprehensive understanding of professional theories in the field of space robots, and will find an initial introduction to the engineering processes involved in developing space robots. Rapid advances in technologies such as the Internet of Things, Cloud Computing, and Artificial Intelligence have also produced profound changes in space robots. With the continuous expansion of human exploration of the universe, it is imperative for space robots to be capable of sharing knowledge, working collaboratively, and becoming more and more intelligent so as to optimize the utilization of space resources. For on-orbit robots that perform service tasks such as spacecraft assembly and maintenance, as well as exploration robots that carry out research tasks on planetary surfaces, the rational integration into a network system can greatly improve their capabilities in connection with executing outer space tasks, such as information gathering and utilization, independent decision-making and planning, risk avoidance, and reliability, while also significantly reducing resource consumption for the system as a whole.
This edited book covers space robotics and autonomous systems (space RAS) from technologies to advances and applications including sensing and perception, mobility, manipulations, high-level autonomy, human-robot interaction, multi-modal interaction, modelling and simulation, and safety and trust.
Based on lecture notes on a space robotics course, this book offers a pedagogical introduction to the mechanics of space robots. After presenting an overview of the environments and conditions space robots have to work in, the author discusses a variety of manipulatory devices robots may use to perform their tasks. This is followed by a discussion of robot mobility in these environments and the various technical approaches. The last two chapters are dedicated to actuators, sensors and power systems used in space robots. This book fills a gap in the space technology literature and will be useful for students and for those who have an interest in the broad and highly interdisciplinary field of space robotics, and in particular in its mechanical aspects.
Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
The author gives a rigorous, comprehensive coverage of space robotics. His mechatronic approach could be used as a general introduction to mechatronic engineering.
Presents the established principles underpinning space robotics with a thorough and modern approach. This text is perfect for professionals in the field looking to gain an understanding of real-life applications of manipulators on satellites, and of the dynamics of satellites carrying robotic manipulators and of planetary rovers.
Soviet Robots in the Solar System provides a history of the Soviet robotic lunar and planetary exploration program from its inception, with the attempted launch of a lunar impactor on September 23, 1958, to the last launch in the Russian national scientific space program in the 20th Century, Mars 96, on November 16, 1996. This title makes a unique contribution to understanding the scientific and engineering accomplishments of the Soviet Union’s robotic space exploration enterprise from its infancy to its demise with the collapse of the Soviet Union. The authors provide a comprehensive account of Soviet robotic exploration of the Solar System for both popular space enthusiasts and professionals in the field. Technical details and science results are provided and put into an historical and political perspective in a single volume for the first time. The book is divided into two parts. Part I describes the key players and the key institutions that build and operate the hardware, the rockets that provide access to space, and the spacecraft that carry out the enterprise. Part II is about putting these pieces together to enable space flight and mission campaigns. Part II is written in chronological order beginning with the first launches to the Moon. Each chapter covers a particular period when specific mission campaigns were undertaken during celestially-determined launch windows. Each chapter begins with a short overview of the flight missions that occurred during the time period and the political and historical context for the flight mission campaigns, including what the Americans were doing at the time. The bulk of each chapter is devoted to the scientific and engineering details of that flight campaign. The spacecraft and payloads are examined with as much technical detail as is available today, the progress is described, and a synopsis of the scientific result is given.
Tethered Space Robot: Dynamics, Measurement, and Control discusses a novel tethered space robot (TSR) system that contains the space platform, flexible tether and gripper. TSR can capture and remove non-cooperative targets such as space debris. It is the first time the concept has been described in a book, which describes the system and mission design of TSR and then introduces the latest research on pose measurement, dynamics and control. The book covers the TSR system, from principle to applications, including a complete implementing scheme. A useful reference for researchers, engineers and students interested in space robots, OOS and debris removal. - Provides for the first time comprehensive coverage of various aspects of tethered space robots (TSR) - Presents both fundamental principles and application technologies including pose measurement, dynamics and control - Describes some new control techniques, including a coordinated control method for tracking optimal trajectory, coordinated coupling control and coordinated approaching control using mobile tether attachment points