Download Free South Atlantic Paleoceanography Book in PDF and EPUB Free Download. You can read online South Atlantic Paleoceanography and write the review.

Describes the findings made in the late 1970s and 80s about the history of the South Atlantic Ocean.
Paleoceanographic proxies provide infonnation for reconstructions of the past, including climate changes, global and regional oceanography, and the cycles of biochemical components in the ocean. These prox ies are measurable descriptors for desired but unobservable environmental variables such as tempera ture, salinity, primary productivity, nutrient content, or surface-water carbon dioxide concentrations. The proxies are employed in a manner analogous to oceanographic methods. The water masses are first characterized according to their specific physical and chemical properties, and then related to particular assemblages of certain organisms or to particular element or isotope distributions. We have a long-standing series of proven proxies available. Marine microfossil assemblages, for instance, are employed to reconstruct surface-water temperatures. The calcareous shells of planktonic and benthic microorgan isms contain a wealth of paleoceanographic information in their isotopic and elemental compositions. Stable oxygen isotope measurements are used to detennine ice volume, and MglCa ratios are related to water temperatures, to cite a few examples. Organic material may also provide valuable infonnation, e. g. , about past productivity conditions. Studying the stable carbon isotope composition of bulk organic matter or individual marine organic components may provide a measure of past surface-water CO 2 conditions within the bounds of certain assumptions. Within the scope of paleoceanographic investigations, the existing proxies are continuously evolving and improving, while new proxies are being studied and developed. The methodology is improved by analysis of samples from the water column and surface sediments, and through laboratory experiments.
The book presents results of recent projects in oceanography and marine geosciences (e.g. WOCE, JGOFS, PAGES, ODP) regarding present and past circulation in the South Atlantic. The objective of the book is to integrate results from both oceanographic and geological studies. As the connecting link between the Antarctic and the North Atlantic, the South Atlantic plays a crucial role with regard to the heat budget of the North Atlantic and to the biogeochemical budget of the global ocean. New results from studies of meridional water mass and heat transports are presented. The central theme of geological investigations is the reconstruction of current and productivity systems in the South Atlantic during the late Quaternary.
This introduction to one of the most common phytoplankton types provides broad coverage from molecular and cellular biology all the way to its impact on the global carbon cycle and climate. Individual chapters focus on coccolithophore biology, ecology, evolutionary phylogeny and impact on current and past global changes. The book addresses fundamental questions about the interaction between the biota and the environment at various temporal and spatial scales.
The South Atlantic plays a critical role in the couplingofoceanic processes between the Antarctic and the lower latitudes. The Antarctic Ocean, along with the adjacent southern seas, is of substantial importance for global climate and for the distributionofwater masses because itprovides large regions ofthe world ocean with intermediate and bottom waters. In contrast to the North Atlantic, the Southern Ocean acts more as an "information distributor", as opposed to an amplifier. Just as the North Atlantic is influencedby the South Atlantic through the contributionofwarm surface water,the incomingsupply ofNADW - in the area of the Southern Ocean as Circumantarctic Deep Water - influences the oceanography ofthe Antarctic. The competing influences from the northern and southern oceans on the current and mass budget systems can be best studied in the South Atlantic. Not only do changes in the current systems in the eastern Atlantic high-production regions affect the energy budget, they also influence the nutrient inventories, and therefore impact the entire productivity ofthe ocean. In addition, the broad region of the polar front is a critical area with respect to productivity-related circulation since it is the source of Antarctic Intermediate Water. Although theAntarctic Intermediate Watertoday liesdeeper than the water that rises in the upwelling regions, it is the long-term source ofnutrients that are ultimately responsible for the supply oforganic matter to the sea floor and to sediments.
The northern North Atlantic is one of the regions most sensitive to past and present global changes. This book integrates the results of an interdisciplinary project studying the properties of the Greenland-Iceland-Norwegian Seas and the processes of pelagic and benthic particle formation, particle transport, and deposition in the deep-sea sediments. Ice-related and biogeochemical processes have been investigated to decipher the spatial and temporal variability of the production and fate of organic carbon in this region. Isotopic stratigraphy, microfossil assemblages and paleotemperatures are combined to reconstruct paleoceanographic conditions and to model past climatic changes in the Late Quaternary. The Greenland-Iceland-Norwegian Seas can now be considered one of the best studied subbasins of the world`s oceans.
One of Springer’s Major Reference Works, this book gives the reader a truly global perspective. It is the first major reference work in its field. Paleoclimate topics covered in the encyclopedia give the reader the capability to place the observations of recent global warming in the context of longer-term natural climate fluctuations. Significant elements of the encyclopedia include recent developments in paleoclimate modeling, paleo-ocean circulation, as well as the influence of geological processes and biological feedbacks on global climate change. The encyclopedia gives the reader an entry point into the literature on these and many other groundbreaking topics.
Greenhouse gases, global warming, thinning ozone layers—understanding the Earth's climatic changes is one of today's most pressing international concerns. How fast has the climate changed? Where and why is it changing? What is the impact of climate change on our ecosystems, coastal regions, glaciers, forests, and lakes, and even on the evolution of our own species? This introduction to the rapidly emerging field of paleoclimatology explains the patterns and processes in the history of the Earth's climate to answer such essential questions. Using the geologic records of ocean and lake sediment, ice cores, corals, and other natural archives, Principles of Paleoclimatology describes the history of the Earth's climate—the ice age cycles, sea level changes, volcanic activity, changes in atmosphere and solar radiation—and the resulting, sometimes catastrophic, biotic responses. These paleoclimate records provide a baseline against which we can compare modern climate trends. Designed to give a fundamental background—including both history and methodology—to the discipline of paleoclimatology, this book is the first to advance our understanding of how climate change develops, how those changes are detected, and how the climate of the past can shape the climate of the future.