Download Free Some Stochastic Processes In Population Genetics With Their Diffusion Approximations Book in PDF and EPUB Free Download. You can read online Some Stochastic Processes In Population Genetics With Their Diffusion Approximations and write the review.

These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura for his continuous encouragement. My thanks also go to the small but resolute groups of.students, visitors and colleagues whose enthusiasm was a great source of encouragement. I am especially obliged to Dr. Martin Curie-Cohen and Dr. Crow for reading a large part eX the manuscript and making many valuable comments. Special gratitude is expressed to Miss Sumiko Imamiya for her patience and endurance and for her efficient preparation of the manuscript.
Population processes are stochastic models for systems involving a number of similar particles. Examples include models for chemical reactions and for epidemics. The model may involve a finite number of attributes, or even a continuum. This monograph considers approximations that are possible when the number of particles is large. The models considered will involve a finite number of different types of particles.
This monograph considers approximations that are possible when the number of particles in population processes is large
Prologue; Acknowledgments; Contents; 1. An Introduction to Mathematical Probability with Applications in Mendelian Genetics; 1.1 Introduction; 1.2 Mathematical Probability in Mendelian Genetics; 1.3 Examples of Finite Probability Spaces; Example 1.3.1: An Equal Frequency Model; Example 1.3.2: Partitions of an Abstract Set; Example 1.3.3: A Deterministic Case; Example 1.3.4: Inheritance of Eye Color and Sex; 1.4 Elementary Combinatorial Analysis; 1.5 The Binomial Distribution; Example 1.5.1: Distribution of Boys and Girls in Families of Size N.
One of this century's leading evolutionary biologists, Motoo Kimura revolutionized the field with his random drift theory of molecular evolution—the neutral theory—and his groundbreaking theoretical work in population genetics. This volume collects 57 of Kimura's most important papers and covers forty years of his diverse and original contributions to our understanding of how genetic variation affects evolutionary change. Kimura's neutral theory, first presented in 1968, challenged the notion that natural selection was the sole directive force in evolution. Arguing that mutations and random drift account for variations at the level of DNA and amino acids, Kimura advanced a theory of evolutionary change that was strongly challenged at first and that eventually earned the respect and interest of evolutionary biologists throughout the world. This volume includes the seminal papers on the neutral theory, as well as many others that cover such topics as population structure, variable selection intensity, the genetics of quantitative characters, inbreeding systems, and reversibility of changes by random drift. Background essays by Naoyuki Takahata examine Kimura's work in relation to its effects and recent developments in each area.
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.