Download Free Some Domain Decomposition Algorithms For Elliptic Problems Classic Reprint Book in PDF and EPUB Free Download. You can read online Some Domain Decomposition Algorithms For Elliptic Problems Classic Reprint and write the review.

Excerpt from Some Domain Decomposition Algorithms for Elliptic Problems This paper is organized as follows. In Section 2, we review some of the ideas of substructuring that are very important in the development of computational methods of structural engineering. This discussion naturally leads to matrix splittings, which provide preconditioners for the large lin ear systems of algebraic equations, which arises in finite element work. In section 3, we discuss different Schwarz methods and some general tools for estimating their rates of convergence. In the concluding sections, we show how two types of domain decomposition algorithms can be analyzed by using relatively simple tools of mathematical and finite element analysis. While we can do much with linear algebra, we ultimately have to resort to tools of analysis in order to complete the proofs of our main results. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Presents an easy-to-read discussion of domain decomposition algorithms, their implementation and analysis. Ideal for graduate students about to embark on a career in computational science. It will also be a valuable resource for all those interested in parallel computing and numerical computational methods.
This volume contains the papers presented at the title conference. Speakers from 13 different countries were represented at the meeting. A broad range of topics in theoretical and applied wave propagation is covered.
Domain decomposition is an active, interdisciplinary research field concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models. This volume contains selected papers presented at the 17th International Conference on Domain Decomposition Methods in Science and Engineering. It presents the newest domain decomposition techniques and examines their use in the modeling and simulation of complex problems.
Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators - Theory & Applications
Over the last ten years, adaptive wavelet methods have turned out to be a powerful tool in the numerical treatment of operator equations given on a bounded domain or closed manifold. In this work, we consider semi-nonlinear operator equations, including an elliptic linear operator as well as a nonlinear monotone one. Since the classical approach to construct a wavelet Riesz basis for the solution space is still afflicted with some notable problems, we use the weaker concept of wavelet frames to design an adaptive algorithm for the numerical solution of problems of this type. Choosing an appropriate overlapping decomposition of the given domain, a suitable frame system can be constructed easily. Applying it to the given continuous problem yields a discrete, bi-infinite nonlinear system of equations, which is shown to be solvable by a damped Richardson iteration method. We then successively introduce all building blocks for the numerical implementation of the iteration method. Here, we concentrate on the evaluation of the discrete nonlinearity, where we show that the previously developed auxiliary of tree-structured index sets can be generalized to the wavelet frame setting in a proper way. This allows an effective numerical treatment of the nonlinearity by so-called aggregated trees. Choosing the error tolerances appropriately, we show that our adaptive scheme is asymptotically optimal with respect to aggregated tree-structured index sets, i.e., it realizes the same convergence rate as the sequence of best N-term frame approximations of the solution respecting aggregated trees. Moreover, under the assumption of a sufficiently precise numerical quadrature method, the computational cost of our algorithm stays the same order as the number of wavelets used by it. The theoretical results are widely confirmed by one- and two-dimensional test problems over non-trivial bounded domains.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?