Download Free Solving Linear Systems On Vector And Shared Memory Computers Book in PDF and EPUB Free Download. You can read online Solving Linear Systems On Vector And Shared Memory Computers and write the review.

This revised edition provides the mathematical background and algorithmic skills required for the production of numerical software. It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.
This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.
Table of contents
Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.
Since the first edition of this book was published in 1996, tremendous progress has been made in the scientific and engineering disciplines regarding the use of iterative methods for linear systems. The size and complexity of the new generation of linear and nonlinear systems arising in typical applications has grown. Solving the three-dimensional models of these problems using direct solvers is no longer effective. At the same time, parallel computing has penetrated these application areas as it became less expensive and standardized. Iterative methods are easier than direct solvers to implement on parallel computers but require approaches and solution algorithms that are different from classical methods. Iterative Methods for Sparse Linear Systems, Second Edition gives an in-depth, up-to-date view of practical algorithms for solving large-scale linear systems of equations. These equations can number in the millions and are sparse in the sense that each involves only a small number of unknowns. The methods described are iterative, i.e., they provide sequences of approximations that will converge to the solution.
This book presents a unified treatment of recently developed techniques and current understanding about solving systems of linear equations and large scale eigenvalue problems on high-performance computers. It provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications. Topics include major elements of advanced-architecture computers and their performance, recent algorithmic development, and software for direct solution of dense matrix problems, direct solution of sparse systems of equations, iterative solution of sparse systems of equations, and solution of large sparse eigenvalue problems.
Although the last decade has witnessed significant advances in control theory for finite and infinite dimensional systems, the stability and control of time-delay systems have not been fully investigated. Many problems exist in this field that are still unresolved, and there is a tendency for the numerical methods available either to be too general or too specific to be applied accurately across a range of problems. This monograph brings together the latest trends and new results in this field, with the aim of presenting methods covering a large range of techniques. Particular emphasis is placed on methods that can be directly applied to specific problems. The resulting book is one that will be of value to both researchers and practitioners.
The editors provide a review of the programming environments for parallel computers with the help of worldwide specialists in each domain. Four different domains were discussed at the workshop, and they each form a part of this book.
Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts