Download Free Solid State Physics For Metallurgists Book in PDF and EPUB Free Download. You can read online Solid State Physics For Metallurgists and write the review.

Metal Physics and Physical Metallurgy, Volume 6: Solid State Physics for Metallurgists provides an introduction to the basic understanding of the properties that make materials useful to mankind. This book discusses the electronic structure of matter, which is the domain of solid state physics. Organized into 12 chapters, this volume begins with an overview of the electronic structure of free atoms and the electronic structure of solids. This text then examines the basis of the Bloch theorem, which is the exact periodicity of the potential. Other chapters consider the fundamental assumption in the solid whereby the bonding electrons between atoms act as nearly harmonic oscillator spring being somewhat stiffer in compression than expansion. This book discusses as well the various properties of the nucleus. The final chapter deals with the different experimental measurements on copper and iron. This book is a valuable resource for metallurgists, experimentalists, and solid state physicists.
Physical Metallurgy elucidates the microstructure, transformation and properties of metallic materials by means of solid state physics and chemical thermodynamics. Experimental methods of physical metallurgy are also treated. This third edition includes new sections on the permeation of hydrogen in metals, the Landau theory of martensitic transformation, and order hardening and plasticity of intermetallics. Numerous other sections have been brought up to date in the light of new developments (e.g. scanning tunnelling microscopy, CALPHAD-method, diffusion in glasses, DIGM, recrystallisation). New artwork and references have also been added. Professor Haasen's clear and concise coverage of a remarkably wide range of topics will appeal both to physics students at the threshold of their metallurgical careers, and to metallurgists who are interested in the physical foundation of their field.
Interstitial Alloys covers the significant progress in the development and understanding of the principles and applications of interstitial alloys. Interstitial alloy refers to the existence of a pure metal lattice, which the metal-metal atom bond remains the dominant one, and the non-metal atoms are sufficiently small to be accommodated within the metal lattice without, or with only a limited degree of, distortion from metal-type symmetry. This book contains 10 chapters and begins with a brief introduction to the basic principles of interstitial alloys. The next two chapters describe the physical properties of these alloys, along with their behavior in solid solutions. The remaining chapters deal with a specific interstitial alloy, its structure, physico-chemical properties, preparation, and application. This work specifically considers carbide, nitride, boride, silicide, oxide, hydride, and mixed interstitial alloys. This book will be of value to chemists and physicists.
This book describes the central aspects of diffusion in solids, and goes on to provide easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Coverage includes diffusion-controlled phenomena including ionic conduction, grain-boundary and dislocation pipe diffusion. This book will benefit graduate students in such disciplines as solid-state physics, physical metallurgy, materials science, and geophysics, as well as scientists in academic and industrial research laboratories.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.