Download Free Solid State Nmr Iii Organic Matter Book in PDF and EPUB Free Download. You can read online Solid State Nmr Iii Organic Matter and write the review.

Solid-State NMR is a branch of Nuclear Magnetic Resonance which is presently experiencing a phase of strongly increasing popularity. The most striking evidence is the large number of contributions from Solid-State Resonance atNMR meetings, approaching that ofliquid state resonance. Important progress can be observed in three areas: Methodological developments, applications to inorganic matter, and applications to organic matter. These developments are intented to be captured in three volumes in this series, each of them being devoted to more or less one of these areas. The present volume on Solid-State NMR III is devoted mainly to organic matter. The recent developments of deuteron NMR and their applications are reviewed in the first chapter. Crosspolarization, MAS, and dynamic angle spinning are being explored for enhancement of information and sensitivity. In addition to the analysis of classical relaxation times and modern 2D spectra, detailed dynamic information becomes accessible from investigations of the relaxation time anisotropies. The second chapter examines cross-polarization in static and rotating solids under conditions of spin diffusion and thermal motion. The underlying dipole-dipole interaction is further exploited by the techniques described in the third chapter for studies of polymer-polymer miscibility. Short range techniques are discriminated from long-range techniques based on spin diffusion. The use ofthese techniques is illustrated by a case study ofPMMAJPVF blends. The last chapter addresses novel z methods and applications of two-dimensional exchange NMR for investigations of relative molecular orientations, polymer morphology, molecular dynamics, and macroscopic molecular order.
Solid-State NMR is a branch of Nuclear Magnetic Resonance which is presently experiencing a phase of strongly increasing popularity. The most striking evidence is the large number of contributions from Solid-State Resonance atNMR meetings, approaching that ofliquid state resonance. Important progress can be observed in three areas: Methodological developments, applications to inorganic matter, and applications to organic matter. These developments are intented to be captured in three volumes in this series, each of them being devoted to more or less one of these areas. The present volume on Solid-State NMR III is devoted mainly to organic matter. The recent developments of deuteron NMR and their applications are reviewed in the first chapter. Crosspolarization, MAS, and dynamic angle spinning are being explored for enhancement of information and sensitivity. In addition to the analysis of classical relaxation times and modern 2D spectra, detailed dynamic information becomes accessible from investigations of the relaxation time anisotropies. The second chapter examines cross-polarization in static and rotating solids under conditions of spin diffusion and thermal motion. The underlying dipole-dipole interaction is further exploited by the techniques described in the third chapter for studies of polymer-polymer miscibility. Short range techniques are discriminated from long-range techniques based on spin diffusion. The use ofthese techniques is illustrated by a case study ofPMMAJPVF blends. The last chapter addresses novel z methods and applications of two-dimensional exchange NMR for investigations of relative molecular orientations, polymer morphology, molecular dynamics, and macroscopic molecular order.
Solid State NMR A thorough and comprehensive textbook covering the theoretical background, experimental approaches, and major applications of solid-state NMR spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful non-destructive technique capable of providing information about the molecular structure and dynamics of molecules. Alongside solution-state NMR, a well-established technique to study chemical structures and investigate physico-chemical properties of molecules in solutions, solid-state NMR (SSNMR) offers many exciting possibilities for the analysis of solid and soft materials across scientific fields. SSNMR shows unique capabilities for a detailed investigation of structural and dynamic properties of materials over wide space and time ranges. For this reason, and thanks to significant advances in the past several years, the application of SSNMR to materials is rapidly increasing in disciplines such as chemistry, physics, and materials and life sciences. Solid State NMR: Principles, Methods, and Applications offers a systematic introduction to the theory, methodological concepts, and major experimental methods of SSMR spectroscopy. Exploring the unique potential of SSNMR for the structural and dynamic characterization of soft and either amorphous or crystalline solid materials, this comprehensive textbook provides foundational knowledge and recent developments of SSNMR, covering physical and theoretical background, experimental methods, and applications to pharmaceuticals, polymers, inorganic and hybrid materials, liquid crystals, and model membranes. Written by two expert authors to ensure a clear and consistent presentation of the subject, this textbook: Includes a brief introduction to the historical aspects and broad theoretical background of solid-state NMR spectroscopy Provides helpful illustrations to explain the various SSNMR concepts and methods Features accessible descriptive text with self-consistent use of quantum mechanics Covers the experimental aspects of SSNMR spectroscopy and in particular a description of many useful pulse sequences Contains references to relevant literature Solid State NMR: Principles, Methods, and Applications is the ideal textbook for university courses on SSNMR, advanced spectroscopies, and a valuable single-volume reference for spectroscopists, chemists, and researchers in the field of materials.
Solid-state NMR covers an enormous range of material types and experimental techniques. Although the basic instrumentation and techniques of solids NMR are readily accessible, there can be significant barriers, even for existing experts, to exploring the bewildering array of more sophisticated techniques. In this unique volume, a range of experts in different areas of modern solid-state NMR explain about their area of expertise, emphasising the “practical aspects” of implementing different techniques, and illustrating what questions can and cannot be addressed. Later chapters address complex materials, showing how different NMR techniques discussed in earlier chapters can be brought together to characterise important materials types. The volume as a whole focusses on topics relevant to the developing field of “NMR crystallography” – the use of solids NMR as a complement to diffraction crystallography. This book is an ideal complement to existing introductory texts and reviews on solid-state NMR. New researchers wanting to understand new areas of solid-state NMR will find each chapter to be the equivalent to spending time in the laboratory of an internationally leading expert, learning the hints and tips that make the difference between knowing about a technique and being ready to put it into action. With no equivalent on the market, it will be of interest to every solid-state NMR researcher (academic and postgraduate) working in the chemical sciences.
Solid-State NMR is a branch of Nuclear Magnetic Resonance which is presently experiencing a phase of strongly increasing popularity. The most striking evidence is the large number of contributions from Solid-State Resonance at NMR meetings, approaching that ofliquid state resonance. Important progress can be observed in the areas of methodological developments and applications to organic and inorganic matter. One volume devoted to more or less one of each of these areas has been published in the preceding three issues. This volume can be considered an addendum to this series. Selected methods and applications of Solid-State NMR are featured in three chapters. The first one treats the recoupling of dipolar interactions in solids, which are averaged by fast sample rotation. Following an introduction to effective Hamiltonians and Floquet theory, different types of experiment such as rotary resonance, dipolar chemical shift correlation spectroscopy, rotational resonance and multipulse recoupling are treated in the powerful Floquet formalism. In the second chapter, the different approaches to line narrowing of quadrupolar nuclei are reviewed in a. consistent formulation of double resonance (DaR) and dynamic angle spinning (DAS). Practical aspects of probe design are considered as well as advanced 2D experiments, sensitivity enhancement techniques, and spinning sideband manipulations. The use of such techniques dramatically increases the number of nuclei which can be probed in high resolution NMR spectroscopy. The final chapter describes new experimental approaches and results of structural studies of noncrystalline solids.
"Cover-to-cover reading of Plastics Additives, Advanced Industrial Analysis, is recommended for both professional analysts and plastics technologists. Professor Bart’s prose style is easy to read. A professional background in analytical chemistry is not assumed. Particularly valuable is the trove of good advice as to which approach might be best in a given situation. Every department with a serious interest in additive / property relations should invest in a copy.” -- PMAD Newsletter. This industrially relevant and up-to-date resource deals with all established and emerging analytical methods for in-polymer additive analysis of plastics formulations. Quality assurance and industrial troubleshooting all benefit from direct analysis modes. Plastics Additives comprises detailed coverage of solid-state spectroscopy, thermal analysis and pyrolysis, laser techniques, surface studies and microanalysis along with process analytics, quantitative analysis and modern method development and validation applied to additives in polymers. The book is organised for quick and easy reference and is extensively illustrated with over 200 figures, 300 flow diagrams and tables to facilitate rapid understanding of this topic, and it contains 4000 references. Emphasis is on understanding (principles and characteristics) and industrial applicability.
NMR spectroscopy is the most valuable and versatile analytical tool in chemistry. While excellent monographs exist on high-resolution NMR in liquids and solids, this is the first book to address multidimensional solid-state NMR. Multidimensional techniques enable researchers to obtain detailed information about the structure, dynamics, orientation, and phase separation of solids, which provides the basis of a better understanding of materials properties on the molecular level.Dramatic progress-much of it pioneered by the authors-has been achieved in this area, especially in synthetic polymers. Solid-state NMR now favorably competes with well-established techniques, such as light, x-ray, or neutron scattering, electron microscopy, and dielectric and mechanical relaxation.The application of multidimensional solid-state NMR inevitably involves use of concepts from different fields of science. This book also provides the first comprehensive treatment of both the new experimental techniques and the theoretical concepts needed in more complex data analysis. The text addresses spectroscopists and polymer scientists by treating the subject on different levels; descriptive, technical, and mathematical approaches are used when appropriate. It presents an overview of new developments with numerous experimental examples and illustrations, which will appeal to readers interested in both the information content as well as the potential of solid-state NMR. The book also contains many previously unpublished details that will be appreciated by those who want to perform the experiments. The techniques described are applicable not only to the study of synthetic polymers but to numerous problems in solid-state physics, chemistry, materials science, and biophysics. - Presents original theories and new perspectives on scattering techniques - Provides a systematic treatment of the whole subject - Gives readers access to previously unpublished material - Includes extensive illustrations
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes". For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
1. G. Engelhardt, H. Koller, Stuttgart, FRG: 29Si NMR of Inorganic Solids 2. H. Pfeifer, Leizpig, FRG: NMR of Solid Surfaces 3. A. Sebald, Bayreuth, FRG: MAS and CP/MAS NMR of Less Common Spin-1/2 Nuclei 4. C. J{ger, Mainz, FRG: Satellite Transition Spectroscopy of Quadrupolar Nuclei 5. D. Brinkmann, M. Mali, Z}rich, CH: NMR-NQR Studies of High-Temperature Superconductors.
An up-to-date resource on natural nonliving organic matter Bringing together world-renowned researchers to explore natural nonliving organic matter (NOM) and its chemical, biological, and ecological importance, Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems offers an integrated view of the dynamics and processes of NOM. This multidisciplinary approach allows for a comprehensive treatment encompassing all the formation processes, properties, reactions, environments, and analytical techniques associated with the latest research on NOM. After briefly outlining the historical background, current ideas, and future prospects of the study of NOM, the coverage examines: The formation mechanisms of humic substances Organo-clay complexes The effects of organic matter amendment Black carbon in the environment Carbon sequestration and dynamics in soil Biological activities of humic substances Dissolved organic matter Humic substances in the rhizosphere Marine organic matter Organic matter in atmospheric particles In addition to the above topics, the coverage includes such relevant analytical techniques as separation technology; analytical pyrolysis and soft-ionization mass spectrometry; nuclear magnetic resonance; EPR, FTIR, Raman, UV-visible adsorption, fluorescence, and X-ray spectroscopies; and thermal analysis. Hundreds of illustrations and photographs further illuminate the various chapters. An essential resource for both students and professionals in environmental science, environmental engineering, water science, soil science, geology, and environmental chemistry, Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems provides a unique combination of the latest discoveries, developments, and future prospects in this field.