Download Free Solid Phase Extraction Book in PDF and EPUB Free Download. You can read online Solid Phase Extraction and write the review.

Solid Phase Extraction thoroughly presents both new and historic techniques for dealing with solid phase extraction. It provides all information laboratory scientists need for choosing and utilizing suitable sample preparation procedures for any kind of sample. In addition, the book showcases the contemporary uses of sample preparation techniques in the most important industrial and academic project environments, including solid-phase Microextraction, molecularly imprinted polymers, magnetic nanoparticles, and more. Written by recognized experts in their respective fields, this one-stop reference is ideal for those who need to know which technique to choose for solid phase extraction. Used in conjunction with a similar release, Liquid Phase Extraction, this book allows users to master this crucial aspect of sample preparation. - Defines the current state-of-the-art in extraction techniques and the methods and procedures for implementing them in laboratory practice - Includes extensive referencing that facilitates the identification of key information - Aimed at both entry-level scientists and those who want to explore new techniques and methods
This complete laboratory reference manual explains the principles behind solid phase extraction (SPE) and provides readily reproducible protocols for solving extraction problems in forensic and clinical chemistry. Numerous actual chromatograms, based on original research and diverse applications, demonstrate the technique and the results that can be achieved. Extensive appendices allow fast access to frequently needed information on reagents, the preparation of solutions and buffers, milliequivalent and millimode calculations, buffers and pKa for SPE, and a complete RapidTrace® technical manual. Each proven protocol is described in step-by-step detail and contains an introduction outlining the principle behind the technique, lists of equipment and reagents, and tips on troubleshooting and on avoiding known pitfalls.
Demonstrating the relationship of the basic theory of solid-phase extraction (SPE) to chromatography, this comprehensive reference illustrates how SPE techniques significantly contribute to the preparation of samples for a wide variety of analytical techniques. It provides step-by-step details on the applications of SPE to environmental matrices, broad-spectrum drug screening, veterinary drug abuse, pharmaceutical drug development, biological samples, and high-throughput screening. Written by world-renowned experts in the field, the book contains helpful reference charts, tables of solvent properties, selectivities, molecular acid/base properties, and more.
Analytical Sample Preparation With Nano- and Other High-Performance Materials covers advanced sample treatment techniques and the new materials that can be used to boost their performance. The evolution of sample treatment over the last two decades has resulted in the development of new techniques and application of new materials. This is a must-have resource for those studying advanced analytical techniques and the role of high-performance materials in analytical chemistry. The book explains the underlying principles needed to properly understand sample preparation, and also examines the latest materials - including nanomaterials - that result in greater sensitivity and specificity. The book begins with a section devoted to all the various sample preparation techniques and then continues with sections on high-performance sorbents and high-performance solvents. - Combines basic, fundamental principles and advanced concepts and applications for a comprehensive treatment of sample preparation with new materials - Defines nano- and other high-performance materials in this context, including carbon nanoparticles, inorganic nanoparticles, ionic liquids, supramolecular solvents, and more - Includes discussion of all the latest advancements and new findings in both techniques and materials used for proper sample preparation
Liquid Phase Extraction thoroughly presents both existing and new techniques in liquid phase extraction. It not only provides all information laboratory scientists need for choosing and utilizing suitable sample preparation procedures for any kind of sample, but also showcases the contemporary uses of sample preparation techniques in the most important industrial and academic project environments, including countercurrent chromatography, pressurized-liquid extraction, single-drop Microextraction, and more. Written by recognized experts in their respective fields, it serves as a one-stop reference for those who need to know which technique to choose for liquid phase extraction. Used in conjunction with a similar release, Solid Phase Extraction, it allows users to master this crucial aspect of sample preparation. - Defines the current state-of-the-art in extraction techniques and the methods and procedures for implementing them in laboratory practice - Includes extensive referencing that facilitates the identification of key information - Aimed at both entry-level scientists and those who want to explore new techniques and methods
Through over 150 full color diagrams and straight forward text, readers will understand the power and usefulness of solid-phase extraction and how it helps solve sample preparation challenges. This 212 page book covers many topics including SPE device formats, sorbent considerations, mobile phase selection, and troubleshooting. A must read for anyone starting out in analytical chromatography as well as seasoned chemists looking to add solid-phase extraction to their skills set. Looking for something else? Learn a new technique or technology with the Waters Primers Series, view other titles available here: http://www.wiley.com/go/waters
New trends in solid-phase extraction for analytical use--a practical introduction. Owing to its low cost, ease of use, and nonpolluting means of preparing samples for analysis, solid-phase extraction (SPE) is fast overtaking traditional liquid--liquid methods in clinical, pharmaceutical, agricultural, and industrial applications. This book describes what analytical scientists and technicians need to know about this emerging procedure: how it works, how to choose from available techniques, how to utilize it effectively in the laboratory. Along with the historical perspective and fundamental principles, this practical book reviews the latest literature on solid-phase materials, equipment, and applications--including EPA-endorsed techniques. Special features include: * Coverage of separation and uptake methods. * Promising developments in the use of membrane disks. * The advantages of using polymeric resins over silica materials. * Mechanism and use of ion-exchange materials for SPE. * A remarkably complete chapter on the extraction of metal ions. * Groundbreaking research in the miniaturized SPE technique. Readers seeking additional information on SPE procedures may wish to consult: SOLID-PHASE EXTRACTION, Principles and Practice, E. M. Thurman and M. S. Mills 1998 (0-471-61422-X) 384 pp. SOLID-PHASE MICROEXTRACTION Theory and Practice Janusz Pawliszyn 1997 (0-471-19034-9) 264 pp.
Metal–organic frameworks (MOFs) are porous crystalline polymers con­structed by metal sites and organic building blocks. Since the discovery of MOFs in the 1990s, they have received tremendous research attention for various applications due to their high surface area, controllable mor­phology, tunable chemical properties, and multifunctionalities, including MOFs as precursors and self-sacrificing templates for synthesizing metal oxides, heteroatom-doped carbons, metal-atoms encapsulated carbons, and others. Thus, awareness and knowledge about MOFs and their derived nanomaterials with conceptual understanding are essential for the advanced material community. This breakthrough new volume aims to explore down-to-earth applications in fields such as bio­medical, environmental, energy, and electronics. This book provides an overview of the structural and fundamental properties, synthesis strate­gies, and versatile applications of MOFs and their derived nanomaterials. It gives an updated and comprehensive account of the research in the field of MOFs and their derived nanomaterials. Whether as a reference for industry professionals and nanotechnologists or for use in the classroom for graduate and postgraduate students, faculty members, and research and development specialists working in the area of inorganic chemistry, materials science, and chemical engineering, this is a must-have for any library.
The importance of accurate sample preparation techniques cannot be overstated--meticulous sample preparation is essential. Often overlooked, it is the midway point where the analytes from the sample matrix are transformed so they are suitable for analysis. Even the best analytical techniques cannot rectify problems generated by sloppy sample pretreatment. Devoted entirely to teaching and reinforcing these necessary pretreatment steps, Sample Preparation Techniques in Analytical Chemistry addresses diverse aspects of this important measurement step. These include: * State-of-the-art extraction techniques for organic and inorganic analytes * Sample preparation in biological measurements * Sample pretreatment in microscopy * Surface enhancement as a sample preparation tool in Raman and IR spectroscopy * Sample concentration and clean-up methods * Quality control steps Designed to serve as a text in an undergraduate or graduate level curriculum, Sample Preparation Techniques in Analytical Chemistry also provides an invaluable reference tool for analytical chemists in the chemical, biological, pharmaceutical, environmental, and materials sciences.
This book coves one of the most important areas in analytical sciences, extraction techniques for organic compounds in environmental and related matrices. This text discusses all of the key stages for analysing a sample for organic compounds from the initial sampling protocols, the range of different extraction techniques for solid, liquid and air samples through to the final chromatographic analysis. The topics covered include: Initial steps for solid, aqueous and air sampling. Extraction techniques for aqueous samples, including LLE, purge and trap, SPE, SPME, SBSE, SDME, membrane microextraction and MPES. Extraction techniques for solid samples, including Soxhlet, 'Soxtec', Shake-flask, sonication, PFE, MAE, SFE and MSPD. Extraction techniques for air sampling, including whole air, enrichment approaches and desorption techniques. Pre-concentration approaches for post-extraction. Practical aspects for chromatographic analysis (GC and HPLC) of organic compounds. Quality assurance aspects of analysis. Health and safety considerations. Key features include: Up-to-date information on the latest development in extraction techniques for organic compounds in environmental and food matrices. Ideal for use as a self-study guide, as the basis of a taught course or guided reading for new 'early-career' researchers. Includes a guide for the reader to other sources of information. Extraction Techniques in Analytical Sciences is suitable for undergraduate and postgraduate students, as well as providing an invaluable starting point for individuals undertaking applied research in the fields of analytical, bioanalytical, environmental and food sciences. The Analytical Techniques in the Sciences series of books provides coverage of all of the major analytical techniques and their application in the most important areas of physical, life and materials science. Each text is presented in an open learning/distance learning style, in which the learning objectives are clearly identified. the reader's understanding of the material is constantly evaluated by the use of self-assessment and discussion questions.