Download Free Solar Cells And Modules Book in PDF and EPUB Free Download. You can read online Solar Cells And Modules and write the review.

This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.
Presently there is no single publication available which covers the topics related to photovoltaic (PV) or photovoltaic thermal (PV/T) technologies, thermal modelling, CO2 mitigation and carbon trading. This book disseminates the current knowledge in the fundamentals of solar energy, photovoltaic (PV) or photovoltaic thermal (PV/T) technologies, energy security and climate change and is aimed at undergraduate and postgraduate students and professionals. The main emphasis of the book is on the design, construction, performance and application of PV and PV/T from the electricity and thermal standpoint. Hot topics covered in the book include: energy security of a nation, climate change, CO2 mitigation and carbon credit earned by using PV or PV/T technologies (Carbon Trading). This information will prove helpful in filling the gap between the researchers and professionals working on the application of photovoltaic and global climate change. It also covers economic, cost effective and sustainable aspects of photovoltaic technologies. The book gives a detailed history of the new technological developments in PV/T systems worldwide with system photographs and references and elaborates on the fundamentals of hybrid systems and their performances with thermal modelling. Energy and exergy analysis, techno-economic analysis and carbon trading are key chapters for research professionals. The book also includes important case studies to aid understanding of the subject for all readers.
Metallization is a key step in manufacturing of efficient and reliable solar cells. Written by world-wide renowned experts, this work covers metallization technologies, before describing ongoing R&D activities for the most relevant silicon solar cells metallization technologies. Later chapters deal with aspects of solar cell modules.
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:• comprehensive review of the most popular theories of plates and shells,• relations between three-dimensional theories and two-dimensional ones,• presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),• modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,• applications in modeling of non-classical objects like, for example, nanostructures,• presentation of actual numerical tools based on the finite element approach.
Despite their wide availability and relatively low prices, the conventional energy sources have harmful consequences on the environment and are exhaustible. In order to circumvent these negative effects, the renewable energies in general and the photovoltaic energy in particular are becoming more and more attractive. Solar cell is an electrical device that converts light into electricity at the atomic level. These devices use inorganic or organic semiconductor materials that absorb photons with energy greater than their bandgap to promote energy carriers into their conduction band. They do not pollute the atmosphere by releasing harmful gases, do not require any fuel to produce electricity, and do not move parts so they are rugged. Solar panels have a very long life and do not need much maintenance.
A major update of solar cell technology and the solar marketplace Since the first publication of this important volume over a decade ago, dramatic changes have taken place with the solar market growing almost 100-fold and the U.S. moving from first to fourth place in the world market as analyzed in this Second Edition. Three bold new opportunities are identified for any countries wanting to improve market position. The first is combining pin solar cells with 3X concentration to achieve economic competitiveness near term. The second is charging battery-powered cars with solar cell–generated electricity from arrays in surrounding areas—including the car owners' homes—while simultaneously reducing their home electricity bills by over ninety percent. The third is formation of economic "unions" of sufficient combined economic size to be major competitors. In this updated edition, feed-in tariffs are identified as the most effective approach for public policy. Reasons are provided to explain why pin solar cells outperform more traditional pn solar cells. Field test data are reported for nineteen percent pin solar cells and for ~500X concentrating systems with bare cell efficiencies approaching forty percent. Paths to bare cell efficiencies over fifty percent are described, and key missing program elements are identified. Since government support is needed for new technology prototype integration and qualification testing before manufacturing scale up, the key economic measure is identified in this volume as the electricity cost in cents per kilowatt-hour at the complete installed system level, rather than just the up-front solar cell modules' costs in dollars per watt. This Second Edition will benefit technologists in the fields of solar cells and systems; solar cell researchers; power systems designers; academics studying microelectronics, semiconductors, and solar cells; business students and investors with a technical focus; and government and political officials developing public policy.
Photovoltaic technology has now developed to the extent that it is close to fulfilling the vision of a "solar-energy world," as devices based on this technology are becoming efficient, low-cost and durable. This book provides a comprehensive treatment of thin-film silicon, a prevalent PV material, in terms of its semiconductor nature, starting out with the physical properties, but concentrating on device applications. A special emphasis is given to amorphous silicon and microcrystalline silicon as photovoltaic materials, along with a model that allows these systems to be physically described in the simplest manner possible, thus allowing the student or scientist/engineer entering the field of thin-film electronics to master a few basic concepts that are distinct from those in the field of conventional semiconductors. The main part of the book deals with solar cells and modules by illustrating the basic functioning of these devices, along with their limitations, design optimization, testing and fabrication methods. Among the manufacturing processes discussed are plasma-assisted and hot-wire deposition, sputtering, and structuring techniques.
The most comprehensive, authoritative and widely cited reference on photovoltaic solar energy Fully revised and updated, the Handbook of Photovoltaic Science and Engineering, Second Edition incorporates the substantial technological advances and research developments in photovoltaics since its previous release. All topics relating to the photovoltaic (PV) industry are discussed with contributions by distinguished international experts in the field. Significant new coverage includes: three completely new chapters and six chapters with new authors device structures, processing, and manufacturing options for the three major thin film PV technologies high performance approaches for multijunction, concentrator, and space applications new types of organic polymer and dye-sensitized solar cells economic analysis of various policy options to stimulate PV growth including effect of public and private investment Detailed treatment covers: scientific basis of the photovoltaic effect and solar cell operation the production of solar silicon and of silicon-based solar cells and modules how choice of semiconductor materials and their production influence costs and performance making measurements on solar cells and modules and how to relate results under standardised test conditions to real outdoor performance photovoltaic system installation and operation of components such as inverters and batteries. architectural applications of building-integrated PV Each chapter is structured to be partially accessible to beginners while providing detailed information of the physics and technology for experts. Encompassing a review of past work and the fundamentals in solar electric science, this is a leading reference and invaluable resource for all practitioners, consultants, researchers and students in the PV industry.
Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments. Key features: Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D. Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV. Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells. Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies. Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering. Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.
Photovoltaic Modules: Technology and Reliability provides unique insights into concepts, material design strategies, manufacturing techniques, quality and service life analysis of wafer-based photovoltaic modules. Taking an interdisciplinary approach, the authors focus on two main topics. Part I – Crystalline Silicone Module Technology offers photovoltaics fundamentals: solar cell properties, module design, materials and production, basic module characterization, module power as well as efficiency and module performance. Part II, on the other hand, illustrates the state-of-the-art of module reliability by characterization of modules and degradation effects, examination of PV-Module loads, accelerated aging tests as well as reliability testing of materials and modules. A separate chapter is dedicated to PV module and component certification.