Download Free Soil Remediation And Plants Book in PDF and EPUB Free Download. You can read online Soil Remediation And Plants and write the review.

The soil is being contaminated continuously by a large number of pollutants. Among them, heavy metals are an exclusive group of toxicants because they are stable and difficult to disseminate into non-toxic forms. The ever-increasing concentrations of such pollutants in the soil are considered serious threats toward everyone's health and the environment. Many techniques are used to clean, eliminate, obliterate or sequester these hazardous pollutants from the soil. However, these techniques can be costly, labor intensive, and often disquieting. Phytoremediation is a simple, cost effective, environmental friendly and fast-emerging new technology for eliminating toxic heavy metals and other related soil pollutants. Soil Remediation and Plants provides a common platform for biologists, agricultural engineers, environmental scientists, and chemists, working with a common aim of finding sustainable solutions to various environmental issues. The book provides an overview of ecosystem approaches and phytotechnologies and their cumulative significance in relation to solving various environmental problems. - Identifies the molecular mechanisms through which plants are able to remediate pollutants from the soil - Examines the challenges and possibilities towards the various phytoremediation candidates - Includes the latest research and ongoing progress in phytoremediation
The soil is being contaminated continuously by a large number of pollutants. Among them, heavy metals are an exclusive group of toxicants because they are stable and difficult to disseminate into non-toxic forms. The ever-increasing concentrations of such pollutants in the soil are considered serious threats toward everyone s health and the environment. Many techniques are used to clean, eliminate, obliterate or sequester these hazardous pollutants from the soil. However, these techniques can be costly, labor intensive, and often disquieting. Phytoremediation is a simple, cost effective, environmental friendly and fast-emerging new technology for eliminating toxic heavy metals and other related soil pollutants. Soil Remediation and Plants provides a common platform for biologists, agricultural engineers, environmental scientists, and chemists, working with a common aim of finding sustainable solutions to various environmental issues. The book provides an overview of ecosystem approaches and phytotechnologies and their cumulative significance in relation to solving various environmental problems. Identifies the molecular mechanisms through which plants are able to remediate pollutants from the soil Examines the challenges and possibilities towards the various phytoremediation candidates Includes the latest research and ongoing progress in phytoremediation "
The soil is being contaminated continuously by a large number of pollutants. Among them, heavy metals are an exclusive group of toxicants because they are stable and difficult to disseminate into non-toxic forms. The ever-increasing concentrations of such pollutants in the soil are considered serious threats toward everyone's health and the environment. Many techniques are used to clean, eliminate, obliterate or sequester these hazardous pollutants from the soil. However, these techniques can be costly, labor intensive, and often disquieting. Phytoremediation is a simple, cost effective, environmental friendly and fast-emerging new technology for eliminating toxic heavy metals and other related soil pollutants. Soil Remediation and Plants provides a common platform for biologists, agricultural engineers, environmental scientists, and chemists, working with a common aim of finding sustainable solutions to various environmental issues. The book provides an overview of ecosystem approaches and phytotechnologies and their cumulative significance in relation to solving various environmental problems.
"Explores potential tools to enhance plant performance for remediation of pollutants" -- Back cover.
In the continuing fight against organic environmental xenobiotics, the initial success attributed to bioremediation has paled, in part due to the low availability of xenobiotics entrapped within a soil or sediment matrix. This has generated a very significant wave of interest in the bioavailability issue. However, much experimental evidence is puzzling or contradictory, mechanistic theories are embryonic, and implications for the practice of bioremediation or concerning the natural fate of xenobiotics are still tentative. The debate in Europe and the USA is vigorous. Eastern Europe, following the liberalisation of the economy and political life, is evolving in a similar direction. In many cases, however, limited access to literature sources, severe language barriers, and the lack of a strong pluridisciplinary tradition are hampering the adoption of state of the art techniques. Originally intended to allow scientists in East European countries to become acquainted with the key aspects of the bioavailability debate that is unfolding in the scientific literature in the West, and with its implications for bioremediation efforts, the present book presents a very complete coverage of the theoretical and practical aspects of the (limited) bioavailability of organic xenobiotics in the environment.
Phytoremediation: Biotechnological Strategies for Promoting Invigorating Environs focuses on phytoremediation's history, present and future potential, discussing mechanisms of remediation, different types of pollutant and polluted environs, cell signaling, biotechnology, and molecular biology, including site-directed DNA and the omics related to plant sciences. Sections focus on phytoremediation as an economically feasible and environmentally safe strategy, including its mechanisms from macroscopic to microscopic level, strategies of assisted phytoremediation, the role of omics on innovations on the field, the development of genetically modified plants (GMPs) to deal with pollutants, the future prospects of targeted genetic engineering in phytoremediation and remediation advantages and disadvantages. Other sections in the book explore the phytoremediation of specific environs (water and soil) and specific contaminants that are of major worldwide concern. - Presents phytoremediation mechanisms at a microscopic level (molecular mechanisms) - Covers remediation in different environs and in different kinds of pollutants - Conveys the economic aspects relating to phytoremediation
Winner of the 2017 CBHL Literature Award of Excellence in Landscape Design and Architecture Phyto presents the concepts of phytoremediation and phytotechnology in one comprehensive guide, illustrating when plants can be considered for the uptake, removal or mitigation of on-site pollutants. Current scientific case studies are covered, highlighting the advantages and limitations of plant-based cleanup. Typical contaminant groups found in the built environment are explained, and plant lists for mitigation of specific contaminants are included where applicable. This is the first book to address the benefits of phytotechnologies from a design point of view, taking complex scientific terms and translating the research into an easy-to-understand reference book for those involved in creating planting solutions. Typically, phytotechnology planting techniques are currently employed post-site contamination to help clean up already contaminated soil by taking advantage of the positive effects that plants can have upon harmful toxins and chemicals. This book presents a new concept to create projective planting designs with preventative phytotechnology abilities, ‘phytobuffering’ where future pollution may be expected for particular site programs. Filled with tables, photographs and detailed drawings, Kennen and Kirkwood's text guides the reader through the process of selecting plants for their aesthetic and environmental qualities, combined with their contaminant-removal benefits.
Plant Metal Interaction: Emerging Remediation Techniques covers different heavy metals and their effect on soils and plants, along with the remediation techniques currently available. As cultivable land is declining day-by-day as a result of increased metals in our soil and water, there is an urgent need to remediate these effects. This multi-contributed book is divided into four sections covering the whole of plant metal interactions, including heavy metals, approaches to alleviate heavy metal stress, microbial approaches to remove heavy metals, and phytoremediation. - Provides an overview of the effect of different heavy metals on growth, biochemical reactions, and physiology of various plants - Serves as a reference guide for available techniques, challenges, and possible solutions in heavy metal remediation - Covers sustainable technologies in uptake and removal of heavy metals
An in-depth look at the most promising technology for metal remediation. With current cleanup methodologies offering no real solution to the serious environmental implications of toxic metal contamination, there is a growing need among remediation professionals for effective, affordable, nonpolluting alternatives to energy-intensive engineering processes. This book presents one such promising alternative-the extraordinary new technology of phytoremediation. Through first-rate contributions from the top scientists in the field, Phytoremediation of Toxic Metals surveys worldwide pioneering efforts in the use of plants to treat contamination of such metals as lead, cadmium, chromium, and even radionuclides. The authors explore all major aspects of the technology-how it utilizes the metal-accumulating properties of selected or engineered plants to remove toxic metals from soils and water, how to transfer knowledge from the laboratory to the field, and what methods are most viable for commercial application. Complete, state-of-the-art coverage includes: * The economic advantages of plant-based technology * Regulatory considerations for future phytoremediation * Phytoextraction, phytostabilization, and phytofiltration of toxic metals * Photostabilization of metals using hybrid poplar trees * Phytovolatilization for the special case of mercury and selenium * The biological mechanisms of metal-accumulating plants
Phytoremediation is an exciting, new technology that utilizes metal-accumulating plants to rid soil of heavy metal and radionuclides. Hyperaccumulation plants are an appealing and economical alternative to current methods of soil recovery. Phytoremediation of Contaminated Soil and Water is the most thorough literary examination of the subject available today. The successful implementation of phytoremediation depends on identifying plant material that is well adapted to specific toxic sites. Gentle remediation is then applied in situ, or at the contamination site. No soil excavation or transport is necessary. This severely contains the potential risk of the pollutants entering the food chain. And it's cost effective. The progress of modern man has created many sites contaminated with heavy metals. The effected land is toxic to plants and animals , which creates considerable public interest in remediation. But the commonly used remedies are ex situ, which poses an expensive dilemma and an even greater threat. Phytoremediation offers the prospect of a cheaper and healthier way to deal with this problem. Read Phytoremediation of Contaminated Soil and Water to learn just how far this burgeoning technology has developed.