Download Free Soil Biological Communities And Aboveground Resilience Book in PDF and EPUB Free Download. You can read online Soil Biological Communities And Aboveground Resilience and write the review.

This volume explores current knowledge and methods used to study soil organisms and to attribute their activity to wider ecosystem functions. Biodiversity not only responds to environmental change, but has also been shown to be one of the key drivers of ecosystem function and service delivery. Soil biodiversity in tree-dominated ecosystems is also governed by these principles, the structure of soil biological communities is clearly determined by environmental, as well as spatial, temporal and hierarchical factors. Global environmental change, together with land-use change and ecosystem management by humans, impacts the aboveground structure and composition of tree ecosystems. Due to existing knowledge of the close links between the above- and belowground parts of terrestrial ecosystems, we know that soil biodiversity is also impacted. However, very little is known about the nature of these impacts; effects on the overall level of biodiversity, the magnitude and diversity of functions soil biodiversity generates, but also on the present and future stability of tree ecosystems and soils. Even though much remains to be learned about the relationships between soil biodiversity and tree ecosystem functionality, it is clear that better effort needs to be made to describe and understand key processes which take place in soils and are driven by soil biota.
Aboveground-Belowground Linkages provides the most up-to-date and comprehensive synthesis of recent advances in our understanding of the roles that interactions between aboveground and belowground communities play in regulating the structure and function of terrestrial ecosystems, and their responses to global change. It charts the historical development of this field of ecology and evaluates what can be learned from the recent proliferation of studies on the ecological and biogeochemical significance of aboveground-belowground linkages. The book is structured around four key topics: biotic interactions in the soil; plant community effects; the role of aboveground consumers; and the influence of species gains and losses. A concluding chapter draws together this information and identifies a number of cross-cutting themes, including consideration of aboveground-belowground feedbacks that occur at different spatial and temporal scales, the consequences of these feedbacks for ecosystem processes, and how aboveground-belowground interactions link to human-induced global change.
A comprehensive, edited volume pulling together research on manipulation of the crop microbiome for climate resilient agriculture Microbes for Climate Resilient Agriculture provides a unique collection of data and a holistic view of the subject with quantitative assessment of how agricultural systems will be transformed in coming decades using hidden treasure of microbes. Authored by leaders in the field and edited to ensure conciseness and clarity, it covers a broad range of agriculturally important crops, discusses the impact of climate change on crops, and examines biotechnologically and environmentally relevant microbes. The book encapsulates the understanding of microbial mediated stress management at field level, and will serve as a springboard for novel research findings and new applications in the field. Chapter coverage includes: the role of the phytomicrobiome in maintaining biofuel crop production in a changing climate; the impact of agriculture on soil microbial community composition and diversity in southeast Asia; climate change impact on plant diseases; microalgae; photosynthetic microorganisms and bioenergy prospects; amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms; role of methylotrophic bacteria in climate change mitigation; conservation agriculture for climate change resilience; archaeal community structure; mycorrhiza-helping plants to navigate environmental stresses; endophytic microorganisms; bacillus thuringiensis; and microbial nanotechnology for climate resilient agriculture. Clear and succinct chapters contributed and edited by leaders in the field Covers microbes' beneficial and detrimental roles in the microbiome, as well as the functions they perform under stress Discusses the crop microbiome, nutrient cycling microbes, endophytes, mycorrhizae, and various pests and diseases, and their roles in sustainable farming Places research in larger context of climate change's effect on global agriculture Microbes for Climate Resilient Agriculture is an important text for scientists and researchers studying microbiology, biotechnology, environmental biology, agronomy, plant physiology, and plant protection.
This open access book synthesizes leading-edge science and management information about forest and rangeland soils of the United States. It offers ways to better understand changing conditions and their impacts on soils, and explores directions that positively affect the future of forest and rangeland soil health. This book outlines soil processes and identifies the research needed to manage forest and rangeland soils in the United States. Chapters give an overview of the state of forest and rangeland soils research in the Nation, including multi-decadal programs (chapter 1), then summarizes various human-caused and natural impacts and their effects on soil carbon, hydrology, biogeochemistry, and biological diversity (chapters 2–5). Other chapters look at the effects of changing conditions on forest soils in wetland and urban settings (chapters 6–7). Impacts include: climate change, severe wildfires, invasive species, pests and diseases, pollution, and land use change. Chapter 8 considers approaches to maintaining or regaining forest and rangeland soil health in the face of these varied impacts. Mapping, monitoring, and data sharing are discussed in chapter 9 as ways to leverage scientific and human resources to address soil health at scales from the landscape to the individual parcel (monitoring networks, data sharing Web sites, and educational soils-centered programs are tabulated in appendix B). Chapter 10 highlights opportunities for deepening our understanding of soils and for sustaining long-term ecosystem health and appendix C summarizes research needs. Nine regional summaries (appendix A) offer a more detailed look at forest and rangeland soils in the United States and its Affiliates.
Protists are by far the most diverse and abundant eukaryotes in soils. Nevertheless, very little is known about individual representatives, the diversity and community composition and ecological functioning of these important organisms. For instance, soil protists are commonly lumped into a single functional unit, i.e. bacterivores. This work tackles missing knowledge gaps on soil protists and common misconceptions using multi-methodological approaches including cultivation, microcosm experiments and environmental sequencing. In a first part, several new species and genera of amoeboid protists are described showing their immense unknown diversity. In the second part, the enormous complexity of soil protists communities is highlighted using cultivation- and sequence-based approaches. In the third part, the present of diverse mycophagous and nematophagous protists are shown in functional studies on cultivated taxa and their environmental importance supported by sequence-based approaches. This work is just a start for a promising future of soil Protistology that is likely to find other important roles of these diverse organisms.
Soil science has undergone a renaissance with increasing awareness of the importance of soil organisms and below-ground biotic interactions as drivers of community and ecosystem properties.
Global agriculture is now at the crossroads. The Green Revolution of the last century is losing momentum. Rates of growth in food production are now declining, with land and water resources becoming scarcer, while world population continues to grow. We need to continue to identify and share the knowledge that will support successful and sustainable
Offers an interdisciplinary exploration of resilience in agriculture, and implications for producers seeking to adapt to change and uncertainty.
The breadth and depth of understanding of many areas concerning basidiomycetes has increased dramatically since the premier publication of Frankland et al., Decomposer Basidiomycetes: their Biology and Ecology. New vistas have opened up with the advent of powerful computing, modeling and molecular approaches helping to greatly increase the general understanding of the ecology of basidiomycetes. This is tantamount to understanding the role of fungi in natural ecosystems because they are major agents of decomposition and nutrient cycling. These remarkable advances have been incorporated into this volume that discusses all aspects of saprotrophic basidiomycete ecology.