Download Free Soil And Sediment Pollution Processes And Remediation Book in PDF and EPUB Free Download. You can read online Soil And Sediment Pollution Processes And Remediation and write the review.

Advances in Remediation Techniques for Polluted Soils and Groundwater focuses on the thematic areas for assessment, mitigation, and management of polluted sites. This book covers advances in modelling approaches, including Machine Learning (ML)/ Artificial Intelligence (AI) applications; GIS and remote sensing; sensors; impacts of climate change on geogenic contaminants; and socio-economic impacts in the poor rural and urban areas, which are lacking in a more comprehensive manner in the previous titles. This book encompasses updated information as well as future directions for researchers working in the field of management and remediation of polluted sites. - Introduces fate and transport of multi-pollutants under varying subsurface conditions - Details underlying mechanisms of biodegradation and biodetoxification of geogenic, industrial and emerging pollutants - Presents recent advances and challenges in assessment, water quality modeling, uncertainty, and water supply management - Provides authoritative contributions on the diverse aspects of management and remediation from leading experts around the world
An unmatched reference on electrochemical technologies for soil, sediment, and groundwater pollution remediation Electrochemical technologies are emerging as important approaches for effective and efficient pollution remediation, both on their own and in concert with other remediation techniques. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater provides a systematic and clear explanation of fundamentals, field applications, as well as opportunities and challenges in developing and implementing electrochemical remediation technologies. Written by leading authorities in their various areas, the text summarizes the latest research and offers case studies that illustrate equipment, installation, and methods employed in real-world remediations. Divided into nine sections, the coverage includes: Introduction and fundamental principles Remediation of heavy metals and other inorganic pollutants Remediation of organic pollutants Remediation of mixed contaminants Electrokinetic barriers Integrated (coupled) technologies Mathematical modeling Economic and regulatory considerations Field applications and performance assessment Unique as a comprehensive reference on the subject, Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater will serve as a valuable resource to all environmental engineers, scientists, regulators, and policymakers.
The soil is the medium through which pollutants originating from human activities, both in agriculture and industry, move from the land surfaces to groundwater. Polluting substances are subject to complex physical, chemical and biological transformations during their movement through the soil. Their displacement depends on the transport properties of the water-air-soil system and on the molecular properties of the pollutants. Prediction of soil pollution and restoration of polluted soils requires an under standing of the processes controlling the fate of pollutants in the soil medium and of the dynamics of the contaminants in the un saturated zone. Our book was conceived· as a basic overview of the processes governing the behavior of pollutants as affected by soil constituents and environmental factors. It was written for the use of specialists working on soil and unsaturated zone pollution and restoration, as well as for graduate students starting research in this field. Since many specialists working on soil restoration lack a back ground in soil science or a knowledge of the properties of soil pollutants, we have included this information which forms the first part of the book. In the second part, we discuss the partitioning of pollutants between the aqueous, solid and gaseous phase of the soil medium. The retention, transformation and transport of pollutants in the soils form the third section.
This document presents key messages and the state-of-the-art of soil pollution, its implications on food safety and human health. It aims to set the basis for further discussion during the forthcoming Global Symposium on Soil Pollution (GSOP18), to be held at FAO HQ from May 2nd to 4th 2018. The publication has been reviewed by the Intergovernmental Technical Panel on Soil (ITPS) and contributing authors. It addresses scientific evidences on soil pollution and highlights the need to assess the extent of soil pollution globally in order to achieve food safety and sustainable development. This is linked to FAO’s strategic objectives, especially SO1, SO2, SO4 and SO5 because of the crucial role of soils to ensure effective nutrient cycling to produce nutritious and safe food, reduce atmospheric CO2 and N2O concentrations and thus mitigate climate change, develop sustainable soil management practices that enhance agricultural resilience to extreme climate events by reducing soil degradation processes. This document will be a reference material for those interested in learning more about sources and effects of soil pollution.
This book demonstrates the measurement, monitoring and mapping of environmental contaminants in soil & sediment, surface & groundwater and atmosphere. This book explores state-of-art techniques based on methodological and modeling in modern geospatial techniques specifically focusing on the recent trends in data mining techniques and robust modeling. It also presents modifications of and improvements to existing control technologies for remediation of environmental contaminants. In addition, it includes three separate sections on contaminants, risk assessment and remediation of different existing and emerging pollutants. It covers major topics such as: Radioactive Wastes, Solid and Hazardous Wastes, Heavy Metal Contaminants, Arsenic Contaminants, Microplastic Pollution, Microbiology of Soil and Sediments, Soil Salinity and Sodicity, Aquatic Ecotoxicity Assessment, Fluoride Contamination, Hydrochemistry, Geochemistry, Indoor Pollution and Human Health aspects. The content of this book will be of interest to researchers, professionals, and policymakers whose work involves environmental contaminants and related solutions.
Soil and Sediment Remediation discusses in detail a whole set of remediative technologies currently available to minimise their impact. Technologies for the treatment of soils and sediments in-situ (landfarming, bioscreens, bioventing, nutrient injection, phytoremediation) and ex-situ (landfarming, bio-heap treatment, soil suspension reactor) will be discussed. The microbiological, process technological and socio-economical aspects of these technologies will be addressed. Special attention will be given to novel biotechnological processes that utilise sulfur cycle conversions, e.g. sulfur and heavy metal removal from soils. Also the potential of phytoremediation will be highlighted. In addition, treatment schemes for the clean-up of polluted megasites, e.g. harbours and Manufactured Gaswork Plants (MGP), will be elaborated. The aim of Soil and Sediment Remediation is to introduce the reader in: the biogeochemical characteristics of soil and sediments- new techniques to study soil/sediment processes (molecular probes, microelectrodes, NMR) clean up technologies for soils polluted with organic (PAH, NAPL, solvents) or inorganic (heavy metals) pollutants- preventative and remediative strategies and technologies available in environmental engineering novel process applications and bioreactor designs for bioremediation the impact of soil pollution on society and its economic importance.
This book details the state-of-the art in early warning monitoring of anthropogenic pollution of soil and water. It is unique with regard to its complex, multidisciplinary, mechanistic approach. Top scientists establish links and strengthen weak connections between specific fields in biology, microbiology, chemistry, biochemistry, toxicology, sensoristics, soil science and hydrogeology.
Bioavailability refers to the extent to which humans and ecological receptors are exposed to contaminants in soil or sediment. The concept of bioavailability has recently piqued the interest of the hazardous waste industry as an important consideration in deciding how much waste to clean up. The rationale is that if contaminants in soil and sediment are not bioavailable, then more contaminant mass can be left in place without creating additional risk. A new NRC report notes that the potential for the consideration of bioavailability to influence decision-making is greatest where certain chemical, environmental, and regulatory factors align. The current use of bioavailability in risk assessment and hazardous waste cleanup regulations is demystified, and acceptable tools and models for bioavailability assessment are discussed and ranked according to seven criteria. Finally, the intimate link between bioavailability and bioremediation is explored. The report concludes with suggestions for moving bioavailability forward in the regulatory arena for both soil and sediment cleanup.