Download Free Soft Computing In Green And Renewable Energy Systems Book in PDF and EPUB Free Download. You can read online Soft Computing In Green And Renewable Energy Systems and write the review.

Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.
As the climate and environment continue to fluctuate, researchers are urgently looking for new ways to preserve our limited resources and prevent further environmental degradation. The answer can be found through computer science, a field that is evolving at precisely the time it is needed most. Soft Computing Applications for Renewable Energy and Energy Efficiency brings together the latest technological research in computational intelligence and fuzzy logic as a way to care for our environment. This reference work highlights current advances and future trends in environmental sustainability using the principles of soft computing, making it an essential resource for students, researchers, engineers, and practitioners in the fields of project engineering and energy science.
Applied Soft Computing and Embedded System Applications in Solar Energy deals with energy systems and soft computing methods from a wide range of approaches and application perspectives. The authors examine how embedded system applications can deal with the smart monitoring and controlling of stand-alone and grid-connected solar photovoltaic (PV) systems for increased efficiency. Growth in the area of artificial intelligence with embedded system applications has led to a new era in computing, impacting almost all fields of science and engineering. Soft computing methods implemented to energy-related problems regularly face data-driven issues such as problems of optimization, classification, clustering, or prediction. The authors offer real-time implementation of soft computing and embedded system in the area of solar energy to address the issues with microgrid and smart grid projects (both renewable and non-renewable generations), energy management, and power regulation. They also discuss and examine alternative solutions for energy capacity assessment, energy efficiency systems design, as well as other specific smart grid energy system applications. The book is intended for students, professionals, and researchers in electrical and computer engineering fields, working on renewable energy resources, microgrids, and smart grid projects. Examines the integration of hardware with stand-alone PV panels and real-time monitoring of factors affecting the efficiency of the PV panels Offers real-time implementation of soft computing and embedded system in the area of solar energy Discusses how soft computing plays a huge role in the prediction of efficiency of stand-alone and grid-connected solar PV systems Discusses how embedded system applications with smart monitoring can control and enhance the efficiency of stand-alone and grid-connected solar PV systems Explores swarm intelligence techniques for solar PV parameter estimation Dr. Rupendra Kumar Pachauri is Assistant Professor – Selection Grade in the Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India. Dr. Jitendra Kumar Pandey is Professor & Head of R&D in the University of Petroleum and Energy Studies (UPES), Dehradun, India. Mr. Abhishek Sharma is working as a research scientist in the research and development department (UPES, India). Dr. Om Prakash Nautiyal is working as a scientist in Uttarakhand Science Education & Research Centre (USERC), Department of Information and Science Technology, Govt. of Uttarakhand, Dehradun, India. Prof. Mangey Ram is working as a Research Professor at Graphic Era Deemed to be University, Dehradun, India.
INTELLIGENT AND SOFT COMPUTING SYSTEMS FOR GREEN ENERGY Written and edited by some of the world’s top experts in the field, this exciting new volume provides state-of-the-art research and the latest technological breakthroughs in next-generation computing systems for the energy sector, striving to bring the science toward sustainability. Real-world problems need intelligent solutions. Across many industries and fields, intelligent and soft computing systems, using such developing technologies as artificial intelligence and Internet of Things, are quickly becoming important tools for scientists, engineers, and other professionals for solving everyday problems in practical situations. This book aims to bring together the research that has been carried out in the field of intelligent and soft computing systems. Intelligent and soft computing systems involves expertise from various domains of research, such as electrical engineering, computer engineering, and mechanical engineering. This book will serve as a point of convergence wherein all these domains come together. The various chapters are configured to address the challenges faced in intelligent and soft computing systems from various fields and possible solutions. The outcome of this book can serve as a potential resource for industry professionals and researchers working in the domain of intelligent and soft computing systems. To list a few soft computing techniques, neural-based load forecasting, IoT-enabled smart grids, and blockchain technology for energy trading. Whether for the veteran engineer or the student learning the latest breakthroughs, this exciting new volume is a must-have for any library.
Advances of Artificial Intelligence in a Green Energy Environment reviews the new technologies in intelligent computing and AI that are reducing the dimension of data coverage worldwide. This handbook describes intelligent optimization algorithms that can be applied in various branches of energy engineering where uncertainty is a major concern. Including AI methodologies and applying advanced evolutionary algorithms to real-world application problems for everyday life applications, this book considers distributed energy systems, hybrid renewable energy systems using AI methods, and new opportunities in blockchain technology in smart energy. Covering state-of-the-art developments in a fast-moving technology, this reference is useful for engineering students and researchers interested and working in the AI industry. - Looks at new techniques in artificial intelligence (AI) reducing the dimension of data coverage worldwide - Chapters include AI methodologies using enhanced hybrid swarm-based optimization algorithms - Includes flowchart diagrams for exampling optimizing techniques
Examines the integration of hardware with stand-alone PV panels and real time monitoring of factors affecting the efficiency of the photovoltaic panels Offers the real time implementation of soft computing and embedded system in the area of solar energy Discusses how soft computing plays a huge role in the prediction of efficiency of stand-alone and grid connected solar PV systems Discusses how embedded system applications with smart monitoring can control and enhance the efficiency of stand-alone and grid connected solar PV systems Explores swarm intelligence techniques for solar PV parameter estimation
Optimization Techniques for Hybrid Power Systems: Renewable Energy, Electric Vehicles, and Smart Grid is a comprehensive guide that delves into the intricate world of renewable energy integration and its impact on electrical systems. With the current global energy crisis and the urgent need to address climate change, this book explores the latest advancements and research surrounding optimization techniques in the realm of renewable energy. This book has a focus on nature-inspired and meta-heuristic optimization methods, and it demonstrates how these techniques have revolutionized renewable energy problem-solving and their application in real-world scenarios. It examines the challenges and opportunities in achieving a larger utilization of renewable energy sources to reduce carbon emissions and air pollutants while meeting renewable portfolio standards and enhancing energy efficiency. This book serves as a valuable resource for researchers, academicians, industry delegates, scientists, and final-year master's degree students. It covers a wide range of topics, including novel power generation technology, advanced energy conversion systems, low-carbon technology in power generation and smart grids, AI-based control strategies, data analytics, electrified transportation infrastructure, and grid-interactive building infrastructure.
This proceedings book contains research papers that are accepted for presentation at the 16th International Conference on Interdisciplinarity in Engineering—INTER-ENG 2022, which is held on 6–7 October 2022, in the city of Târgu Mureș, Romania. The general scope of the conference "Innovative aspects of Industry 4.0" concepts aims at consolidating the digital future of manufacturing in companies" is propsing a new approach related to the development of a new generation of smart factories grounded on the manufacturing and assembly process digitalization. It is related to advance manufacturing technology, lean manufacturing, sustainable manufacturing, additive manufacturing, manufacturing tools and equipment. It is a leading international professional and scientific forum of great interest for engineers and scientists who can read in this book research works contributions and recent developments as well as current practices in advanced fields of engineering.
The book presents new approaches and methods for solving real-world problems. It highlights, in particular, innovative research in the fields of Cognitive Informatics, Cognitive Computing, Computational Intelligence, Advanced Computing, and Hybrid Intelligent Models and Applications. New algorithms and methods in a variety of fields are presented, together with solution-based approaches. The topics addressed include various theoretical aspects and applications of Computer Science, Artificial Intelligence, Cybernetics, Automation Control Theory, and Software Engineering.
This textbook starts with a review of the principles of operation, modeling and control of common solar energy and wind-power generation systems before moving on to discuss grid compatibility, power quality issues and hybrid models of Solar PV and Wind Energy Conversion Systems (WECS). MATLAB/SIMULINK models of fuel cell technology and associated converters are discussed in detail. The impact of soft computing techniques such as neural networks, fuzzy logic and genetic algorithms in the context of solar and wind energy is explained with practical implementation using MATLAB/SIMULINK models. This book is intended for final year undergraduate, post-graduate and research students interested in understanding the modeling and control of Solar PV and Wind Energy Conversion Systems based on MATLAB/SIMULINK. - Each chapter includes “Learning Objectives” at the start, a “Summary” at the end and helpful Review Questions - Includes MATLAB/SIMULINK models of different control strategies for power conditioning units in the context of Solar PV - Presents soft computing techniques for Solar PV and WECS, as well as MATLAB/SIMULINK models, e.g. for wind turbine topologies and grid integration - Covers hybrid solar PV and Wind Energy Conversion Systems with converters and MATLAB/SIMULINK models - Reviews harmonic reduction in Solar PV and Wind Energy Conversion Systems in connection with power quality issues - Covers fuel cells and converters with implementation using MATLAB/SIMULINK