Download Free Smc 03 Conference Proceedings Book in PDF and EPUB Free Download. You can read online Smc 03 Conference Proceedings and write the review.

This book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Sixth International Conference on Harmony Search, Soft Computing and Applications held at Istanbul University, Turkey, in July 2020. Harmony Search (HS) is one of the most popular metaheuristic algorithms, developed in 2001 by Prof. Joong Hoon Kim and Prof. Zong Woo Geem, that mimics the improvisation process of jazz musicians to seek the best harmony. The book consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.
This book comprises the proceedings of the Annual Conference of the Canadian Society of Civil Engineering 2021. The contents of this volume focus on specialty conferences in construction, environmental, hydrotechnical, materials, structures, transportation engineering, etc. This volume will prove a valuable resource for those in academia and industry.
The book covers different aspects of real-world applications of optimization algorithms. It provides insights from the Seventh International Conference on Harmony Search, Soft Computing and Applications held at Virtual Conference, Seoul, South Korea, in February 2022. Harmony search (HS) is one of the most popular metaheuristic algorithms, developed in 2001 by Prof. Joong Hoon Kim and Prof. Zong Woo Geem, that mimics the improvisation process of jazz musicians to seek the best harmony. The book consists of research articles on novel and newly proposed optimization algorithms; the theoretical study of nature-inspired optimization algorithms; numerically established results of nature-inspired optimization algorithms; and real-world applications of optimization algorithms and synthetic benchmarking of optimization algorithms.
Human–Robot Interaction (HRI) considers how people can interact with robots in order to enable robots to best interact with people. HRI presents many challenges with solutions requiring a unique combination of skills from many fields, including computer science, artificial intelligence, social sciences, ethology and engineering. We have specifically aimed this work to appeal to such a multi-disciplinary audience. This volume presents new and exciting material from HRI researchers who discuss research at the frontiers of HRI. The chapters address the human aspects of interaction, such as how a robot may understand, provide feedback and act as a social being in interaction with a human, to experimental studies and field implementations of human–robot collaboration ranging from joint action, robots practically and safely helping people in real world situations, robots helping people via rehabilitation and robots acquiring concepts from communication. This volume reflects current trends in this exciting research field.
Sound in human–robot interaction currently encompasses a wide range of approaches and methodologies not easily classified, analyzed or compared among projects. This edited book covers the state of the art in sound and robotics, aiming to gather existing approaches in a combined volume. Collecting chapters from world-leading academic and industry authors, Sound and Robotics: Speech, Non-Verbal Audio and Robotic Musicianship explores how robots can communicate through speech, non-verbal audio and music. The first set of chapters explores how robots use verbal communication, considering the possibilities of speech for human–robot interaction. The second section shifts to roles of non-verbal communication in HRI, including consequential sound, sonification and audio cues. The third and final section describes current approaches to robotic musicianship and their evaluation. This book is primarily aimed at HRI researchers, ranging from those who have never used sound to those very experienced with sound. Alongside robotic researchers, this book will present avenues for a diverse range of musicians, composers and sound designers to become introduced to the world of HRI and learn of potential creative directions in robotics.
The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.
The treatise supports understanding the phenomena of complexity in engineering, distinguishes complexity from other challenges and presents an overview of definitions and applied approaches.The historical background of complexity management is explained by highlighting the important epochs, their key actors and their discoveries, findings and developments. Knowing about the appearance of early system awareness in ancient Greece, the creation of mechanical philosophy in the 17th century and the discovery of classic physics enables the reader to better comprehend modern system sciences and management approaches.A classification of complexity management approaches by research fields indicates current focus areas and starting points for future discussions. In a comprehensive map, the classification points out mutual overlaps between engineering disciplines in terms of similar complexity management approaches.Finally, the treatise introduces a generic complexity management framework, which is based on structural management approaches.
This book features selected papers presented at the 16th International Conference on Electromechanics and Robotics ‘Zavalishin’s Readings’ – ER(ZR) 2021, held in St. Petersburg, Russia, on April 14–17, 2021. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900–1968) – a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2021 conference was held with XV International Conference “Vibration-2021. Vibration technologies, mechatronics and controlled machines” and VI International Conference “Electric drive, electrical technology and electrical equipment of enterprises“, and was organized by St. Petersburg State University of Aerospace Instrumentation (SUAI), St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Southwest State University (SWSU) and Ufa State Oil Technical University (USPTU).
IMDC-SDSP conference offers an exceptional platform and opportunity for practitioners, industry experts, technocrats, academics, information scientists, innovators, postgraduate students, and research scholars to share their experiences for the advancement of knowledge and obtain critical feedback on their work. The timing of this conference coincides with the rise of Big Data, Artificial Intelligence powered applications, Cognitive Communications, Green Energy, Adaptive Control and Mobile Robotics towards maintaining the Sustainable Development and Smart Planning and management of the future technologies. It is aimed at the knowledge generated from the integration of the different data sources related to a number of active real-time applications in supporting the smart planning and enhance and sustain a healthy environment. The conference also covers the rise of the digital health, well-being, home care, and patient-centred era for the benefit of patients and healthcare providers; in addition to how supporting the development of a platform of smart Dynamic Health Systems and self-management.
This 4-volume set, IFIP AICT 689-692, constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2023, held in Trondheim, Norway, during September 17–21, 2023. The 213 full papers presented in these volumes were carefully reviewed and selected from a total of 224 submissions. They were organized in topical sections as follows: Part I : Lean Management in the Industry 4.0 Era; Crossroads and Paradoxes in the Digital Lean Manufacturing World; Digital Transformation Approaches in Production Management; Managing Digitalization of Production Systems; Workforce Evolutionary Pathways in Smart Manufacturing Systems; Next Generation Human-Centered Manufacturing and Logistics Systems for the Operator 5.0; and SME 5.0: Exploring Pathways to the Next Level of Intelligent, Sustainable, and Human-Centered SMEs. Part II : Digitally Enabled and Sustainable Service and Operations Management in PSS Lifecycle; Exploring Digital Servitization in Manufacturing; Everything-as-a-Service (XaaS) Business Models in the Manufacturing Industry; Digital Twin Concepts in Production and Services; Experiential Learning in Engineering Education; Lean in Healthcare; Additive Manufacturing in Operations and Supply Chain Management; and Applications of Artificial Intelligence in Manufacturing. Part III : Towards Next-Generation Production and SCM in Yard and Construction Industries; Transforming Engineer-to-Order Projects, Supply Chains and Ecosystems; Modelling Supply Chain and Production Systems; Advances in Dynamic Scheduling Technologies for Smart Manufacturing; and Smart Production Planning and Control. Part IV : Circular Manufacturing and Industrial Eco-Efficiency; Smart Manufacturing to Support Circular Economy; Product Information Management and Extended Producer Responsibility; Product and Asset Life Cycle Management for Sustainable and Resilient Manufacturing Systems; Sustainable Mass Customization in the Era of Industry 5.0; Food and Bio-Manufacturing; Battery Production Development and Management; Operations and SCM in Energy-Intensive Production for a Sustainable Future; and Resilience Management in Supply Chains.