Download Free Smart Power Systems And Smart Grids Book in PDF and EPUB Free Download. You can read online Smart Power Systems And Smart Grids and write the review.

The book systematically introduces smart power system design and its infrastructure, platform and operating standards. It focuses on multi-objective optimization and illustrates where the intelligence of the system lies. With abundant project data, this book is a practical guideline for engineers and researchers in electrical engineering, as well as power network designers and managers in administration.
Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way
Advances in Smart Grid Power System: Network, Control and Security discusses real world problems, solutions, and best practices in related fields. The book includes executable plans for smart grid systems, their network communications, tactics on protecting information, and response plans for cyber incidents. Moreover, it enables researchers and energy professionals to understand the future of energy delivery systems and security. Covering fundamental theory, mathematical formulations, practical implementations, and experimental testing procedures, this book gives readers invaluable insights into the field of power systems, their quality and reliability, their impact, and their importance in cybersecurity. - Includes supporting illustrations and tables along with valuable end of chapter reference sets - Provides a working guideline for the design and analysis of smart grids and their applications - Features experimental testing procedures in smart grid power systems, communication networks, reliability, and cybersecurity
The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.
Electric power systems are experiencing significant changes at the worldwide scale in order to become cleaner, smarter, and more reliable. This edited book examines a wide range of topics related to these changes, which are primarily caused by the introduction of information technologies, renewable energy penetration, digitalized equipment, new operational strategies, and so forth. The emphasis will be put on the modeling and control of smart grid systems. The book addresses research topics such as high efficiency transforrmers, wind turbines and generators, fuel cells, or high speed turbines and generators.
Power System SCADA and Smart Grids brings together in one concise volume the fundamentals and possible application functions of power system supervisory control and data acquisition (SCADA). The text begins by providing an overview of SCADA systems, evolution, and use in power systems and the data acquisition process. It then describes the components of SCADA systems, from the legacy remote terminal units (RTUs) to the latest intelligent electronic devices (IEDs), data concentrators, and master stations, as well as: Examines the building and practical implementation of different SCADA systems Offers a comprehensive discussion of the data communication, protocols, and media usage Covers substation automation (SA), which forms the basis for transmission, distribution, and customer automation Addresses distribution automation and distribution management systems (DA/DMS) and energy management systems (EMS) for transmission control centers Discusses smart distribution, smart transmission, and smart grid solutions such as smart homes with home energy management systems (HEMs), plugged hybrid electric vehicles, and more Power System SCADA and Smart Grids is designed to assist electrical engineering students, researchers, and practitioners alike in acquiring a solid understanding of SCADA systems and application functions in generation, transmission, and distribution systems, which are evolving day by day, to help them adapt to new challenges effortlessly. The book reveals the inner secrets of SCADA systems, unveils the potential of the smart grid, and inspires more minds to get involved in the development process.
Power systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (i.e., synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, and flexible loads, with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems, and to promote energy freedom. This is a game changer for the grid. It is the sort of breakthrough — like the touch screen in smart phones — that helps to push an industry from one era to the next, as reported by Keith Schneider, a New York Times correspondent since 1982. This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. As the first book of its kind for power electronics-enabled autonomous power systems, it • introduces a holistic architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids • provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability • demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks • highlights the significance of the SYNDEM concept for power systems and beyond Power Electronics-Enabled Autonomous Power Systems is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.
With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art and to develop new tools. It presents: an overview on the power system and electric signals, with description of the basic concepts of DSP commonly found in power system problems the application of several signal processing tools to problems, looking at power signal estimation and decomposition, pattern recognition techniques, detection of the power system signal variations description of DSP in relation to measurements, power quality, monitoring, protection and control, and wide area monitoring a companion website with real signal data, several Matlab codes with examples, DSP scripts and samples of signals for further processing, understanding and analysis Practicing power systems engineers and utility engineers will find this book invaluable, as will researchers of electrical power and energy systems, postgraduate electrical engineering students, and staff at utility companies.
Few industries in the U.S. are as stuck in the past as our utilities are. In the face of growing challenges from climate change and the need for energy security, a system and a business model that each took more than a century to evolve must now be extensively retooled in the span of a few decades. Despite the need, many of the technologies and institutions needed are still being designed or tested. It is like rebuilding our entire airplane fleet, along with our runways and air traffic control system, while the planes are all up in the air filled with passengers. In this accessible and insightful book, Peter Fox-Penner considers how utilities interact with customers and how the Smart Grid could revolutionize their relationship. Turning to the supply side, he considers the costs of, and tradeoffs between, large-scale power sources such as coal plants and small-scale power sources close to customers. Finally, he looks at how utilities can respond to all of these challenges and remain viable, while financing hundreds of billions of dollars of investment without much of an increase in sales. Upon publication, Smart Power was praised as an instant classic on the future of energy utilities. This Anniversary Edition includes up-to-date assessments of the industry by such leading energy experts as Daniel Estes and Jim Rogers, as well as a new afterword from the author. Anyone who is interested in our energy future will appreciate the clear explanations and the in-depth analysis it offers.
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids